In recent years,lakes,including salted,attract the attention of researchers,also when reconstructing last climate changes using the bottom sediments(Solotchina et al.,2008,et al.).In this case the different geochemical
The development of more efficient management systems is crucial to achieving high grain yields with high nitrogen use efficiency(NUE). February Orchid-spring maize rotation system is a newly established planting sys...The development of more efficient management systems is crucial to achieving high grain yields with high nitrogen use efficiency(NUE). February Orchid-spring maize rotation system is a newly established planting system with the benefits of ground cover and potential wind erosion in northern China. A field experiment was conducted to evaluate the effects of integrated application of February Orchid as green manure with reduction of chemical fertilizers(INTEGRATED) on spring maize yield, N uptake, ammonium volatilization, and soil residual mineral N in northern China. Compared to farmers' traditional fertilization(CON), integrated application of February Orchid as green manure with 30% reduction of nitrogen fertilizers(INTEGRATED) increased maize grain yield and biomass by 9.9 and 10.2%, respectively. The 0–100 cm soil residual Nmin at harvest was decreased by 58.5% and thus nitrogen use efficiency was increased significantly by 26.7%. The nitrogen balance calculation further demonstrated that the INTEGRATED approach performed better than CON with lower apparent nitrogen loss(decreased by 48.9%) which evidenced by the ammonium volatilization of top-dressing fertilizer was decreased by 31.1%, the N_(min) movement to the deeper soil layers was reduced, and the apparent nitrogen leaching loss nearly equal to 0 under the INTEGRATED treatment. Therefore, in northern China, integrated application of green manure and chemical fertilizers is an efficient management approach for improving maize yields and NUE simultaneously.展开更多
基金supported by integrated project no. 56 of the Siberian Branch, Russian Academy of Sciences "Forecasted modeling and multidisciplinary research of several years dynamic of meromictic lakes ecosystems state in Siberia"
文摘In recent years,lakes,including salted,attract the attention of researchers,also when reconstructing last climate changes using the bottom sediments(Solotchina et al.,2008,et al.).In this case the different geochemical
基金support of the Special Fund for Agro-scientific Research in the Public Interest of Ministry of Agriculture of China(201103005)the Science and Technology Innovation in Chinese Academy of Agricultural Sciences+1 种基金the National Crop Germplasm Resources Protection of Ministry of Agriculture of China(2015NWB044)the National Crop Germplasm Resources Platformof Ministry of Science and Technology of China(NICGR2015-019)
文摘The development of more efficient management systems is crucial to achieving high grain yields with high nitrogen use efficiency(NUE). February Orchid-spring maize rotation system is a newly established planting system with the benefits of ground cover and potential wind erosion in northern China. A field experiment was conducted to evaluate the effects of integrated application of February Orchid as green manure with reduction of chemical fertilizers(INTEGRATED) on spring maize yield, N uptake, ammonium volatilization, and soil residual mineral N in northern China. Compared to farmers' traditional fertilization(CON), integrated application of February Orchid as green manure with 30% reduction of nitrogen fertilizers(INTEGRATED) increased maize grain yield and biomass by 9.9 and 10.2%, respectively. The 0–100 cm soil residual Nmin at harvest was decreased by 58.5% and thus nitrogen use efficiency was increased significantly by 26.7%. The nitrogen balance calculation further demonstrated that the INTEGRATED approach performed better than CON with lower apparent nitrogen loss(decreased by 48.9%) which evidenced by the ammonium volatilization of top-dressing fertilizer was decreased by 31.1%, the N_(min) movement to the deeper soil layers was reduced, and the apparent nitrogen leaching loss nearly equal to 0 under the INTEGRATED treatment. Therefore, in northern China, integrated application of green manure and chemical fertilizers is an efficient management approach for improving maize yields and NUE simultaneously.