Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinati...Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.展开更多
Soil sediment samples of 10 layers with a spacing of 10 cm each were collected in different floodplain zones adjacent to Huolin River in the Xianghai Nature Reserve, and contents of total N, total P and organic matter...Soil sediment samples of 10 layers with a spacing of 10 cm each were collected in different floodplain zones adjacent to Huolin River in the Xianghai Nature Reserve, and contents of total N, total P and organic matters were analyzed. The results showed that contents of total N, total P and organic matters were generally decreasing with the increase of distance from sample locations to the river channel, and contents of the three items were generally higher in the upper soil layer than that in the lower soil layer. The content variations displayed how flooding functions influenced nutrient matter content variations in floodplain soils since the flood inundation frequencies of the sample locations varied. The correlation analysis displayed that there were remarkable relativities between total N, total P and organic matters within definite spatial distance from the Huolin River channel.展开更多
Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were det...Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were determined by the aerobic incubation method and the Bremnerprocedure, respectively. Correlation, multiple regression and path analyses were performed to studythe relation of mineralizable N to organic N components. Results of correlation and regressionanalyses showed that the amounts of the N mineralized were parallel to, and significantly correlatedwith, the total acid hydrolyzable N, but was not so with the acid-insoluble N. Of the hydrolyzableN, the amino acid N and the ammonia N had a highly consistent significant correlation with themineralized N, and their partial regression coefficients were significant in the regressionequations, showing their importance in contribution to the mineralizable N. The amino sugar N, onthe other hand, had a relatively high correlation with the mineralized N, but their partialregression coefficients were not significant in the regression equations. In contrast, thehydrolyzable unknown N had no such relations. Path analysis further indicated that the amino acid Nand ammonia N made great direct contributions to the mineralized N, but the contributions of theamino sugar N were very low. These strongly suggested that the mineralized N in the soils tested wasmainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the majorsources for its production.展开更多
Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen...Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen (PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact thatδ^13Candδ^15Ngenerally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the highδ^13Candδ^15Nobserved in shelf bottom water were mostly resulted from sediment resuspension.展开更多
In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended parti...In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended particulate organic matter(POM)collected from the northern South China Sea(NSCS)during summer.Our study revealed thatδ^(13)C generally decreased from land to sea,and elevatedδ^(13)C occurred at the nearshore stations,suggesting that POC was mainly contributed from the eutrophic level and microbial activity.Moreover,the distribution ofδ^(15)N values were complicated,and heterotrophic modification was responsible for higherδ^(15)N in the nearshore stations.These distribution patterns ofδ^(13)C andδ^(15)N in the nearshore stations may be associated with the intensifi-cation of human activity in the coast.Based on the Stable Isotope Analysis in R model,65%of POM was contributed by marine or-ganic matter in the NSCS,20%by terrestrial inputs,and 15%by freshwater algae.展开更多
Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carb...Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.展开更多
The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration o...The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration of shale gas.Macro investigation and experimental analyses were used to assess the lithology in detail,total organic matter mass fraction w(TOC),mineral composition,and trace element characteristics of∈1n.The influencing factors of organic matter enrichment were discussed extensively,and a sedimentary facies mode was suggested.In the early stage of∈1n,the locations of Well E’yangye 1,Well Ciye 1,Well Changye 1,and Well Anye 1 respectively develop,platform inner sag,outer shelf,Jiangnan slope belt,and South China detention basin.In the late stage of∈1n,the sedimentary facies evolve with decreasing sea level.The study area presents a complete three-step basin in the Early Cambrian.In the early stage of∈1n,the first step is the Yangtze carbonate platform,the second step is the outer shelf and slope,and the third step is the deep-water basin.From the Yangtze carbonate platform to the deep-water basin,w(TOC)and the mass fraction of quartz gradually increase,the mass fraction of carbonate mineral decreases,and the mass fraction of clay mineral is higher in the second step.The sea level fluctuation results in a higher w(TOC)vertically in the lower∈1n shale,and the paleogeographic(provenance)conditions lead to better horizontal development of organic matter in the outer shelf,slope and detention basin.Trace elements are abundant in the lower∈1n,and w(TOC)is correlated positively with many trace elements.In the outer shelf,slope,and adjacent areas,hydrothermal activity and upwelling current bring nutrient-rich material and promote organic matter enrichment under a strong reducing condition.Deep-shelf,slope and deep-water basin are the best facies for the formation and preservation of organic matter,especially deep-water basin facies.It remains necessary to strengthen the exploration of shale gas in the deep-water basin of∈1n in central Hunan,China.展开更多
To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Hu...To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-HuaiHai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer(control), chemical fertilizer only(NPK), chemical fertilizer with straw(NPKS), chemical fertilizer with manure(NPKM), and 1.5 times the rate of NPKM(1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil(0–10 and 10–20 cm) and subsoil(20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil(24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers(22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments(NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions(19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions(–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions(i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72(P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.展开更多
Current knowledge about the transformation of total mercury and methylmercury(Me Hg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter(...Current knowledge about the transformation of total mercury and methylmercury(Me Hg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter(DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio(20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg(F3, 46%-60%);while the main form of mercury in C/N 30 was mercuric sulfide(F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance(C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance(C1, 28%-37%) and fulvic-like substance(C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less Me Hg after aerobic composting process, with values of 658%(C/N 20), 1400%(C/N 26) and 139%(C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.展开更多
Setting monitoring transect in the middle and shallow water area(altitude 156-172 m) in Three Gorges reservoir hydro-fluctuation belt to research the changing characteristics of the contents of N, P,K,pH and organic m...Setting monitoring transect in the middle and shallow water area(altitude 156-172 m) in Three Gorges reservoir hydro-fluctuation belt to research the changing characteristics of the contents of N, P,K,pH and organic matter of the soil which experienced the influence of fluctuation the first time. The results showed that by the influence of water level fluctuating,contents of soil N,P,K,pH and organic matter had reduced in different soil layers in hydro-fluctuation belt.The available N decreased by 41.53%-59.87%,available P decreased by 5.26%- 36.76%,available K decreased by 3.55%-45.56%, total N decreased by 9.52%-40.00%,total P had no change generally,total K had decreased a little, content of organic material decreased by 7.62%- 37.83%%,pH value turned to neutral,changed by 1.73%-9.58%.展开更多
The sedimentary record of climate change in the Arctic region is useful for understanding global warming.Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change.Gl...The sedimentary record of climate change in the Arctic region is useful for understanding global warming.Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change.Glacier retreat is occurring in this region due to climate change,leading to an increase in meltwater outflow with a high debris content.In August 2017,we collected a sediment Core Z3 from the central fjord near the Yellow River Station.Then,we used the widely used chronology method of 210Pb,^(137)Cs,and other parameters to reflect the climate change record in the sedimentary environment of Kongsfjord.The results showed that after the mid-late 1990s,the mass accumulation rate of this core increased from 0.10 g/(cm^(2)·a)to 0.34 g/(cm^(2)·a),while the flux of^(210)Pb_(ex)increased from 125 Bq/(m^(2)·a)to 316 Bq/(m^(2)·a).The higher sedimentary inventory of^(210)Pb_(ex)in Kongsfjord compared to global fallout might have been caused by sediment focusing,boundary scavenging,and riverine input.Similarities between the inventory of^(137)Cs and global fallout indicated that terrestrial particulate matter was the main source of^(137)Cs in fjord sediments.The sedimentation rate increased after 1997,possibly due to the increased influx of glacial meltwater containing debris.In addition,the^(137)Cs activity,percentage of organic carbon(OC),and OC/total nitrogen concentration ratio showed increasing trends toward the top of the core since 1997,corresponding to a decrease in the mass balance of glaciers in the region.The results ofδ^(13)C,δ^(15)N and OC/TN concentration ratio showed both terrestrial and marine sources contributed to the organic matter in Core Z3.The relative contribution of terrestrial organic matter which was calculated by a two-endmember model showed an increased trend since mid-1990s.All these data indicate that global climate change has a significant impact on Arctic glaciers.展开更多
The objective of this study was to determine the impact of frequency of broad-leaf crops canola and pea in various crop rotations on pH, total organic C (TOC), total organic N (TON), light fraction organic C (LFOC) an...The objective of this study was to determine the impact of frequency of broad-leaf crops canola and pea in various crop rotations on pH, total organic C (TOC), total organic N (TON), light fraction organic C (LFOC) and light fraction organic N (LFON) in the 0 - 7.5 and 7.5 - 15 cm soil depths in autumn 2009 after 12 years (1998-2009) on a Dark Brown Chernozem (Typic Boroll) loam at Scott, Saskatchewan, Canada. The field ex-periment contained monoculture canola (herbicide tolerant and blackleg resistant hybrid) and monoculture pea compared with rotations that contained these crops every 2-, 3-, and 4-yr with wheat. There was no effect of crop rotation duration and crop phase on soil pH. Mass of TOC and TON in the 0 - 15 cm soil was greater in canola phase than pea phase in the 1-yr (monoculture) and 2-yr crop rotations, while the opposite was true in the 3-yr and 4-yr crop rotations. Mass of TOC and TON (averaged across crop phases,) in soil generally increased with increasing crop rotation duration, with the maximum in the 4-yr rotation while no difference in the 1-yr and 2-yr rotations. Mass of LFOC and LFON in soil was greater in canola phase than pea phase in the 1-yr, 2-yr and 3-yr rotations, but the opposite was true in the 4-yr rotation. There was no consistent effect of crop rotation duration on mass of LFOC and LFON. The N balance sheet over the 1998 to 2009 period indicated large amounts of unaccounted N for monoculture pea, suggesting a great potential for N loss from the soil-plant system in this treatment through nitrate leaching and/or denitrification. In conclusion, the findings suggest that the quantity of organic C and N can be maximized by increasing duration of crop rotation and by including hybrid canola in the rotation.展开更多
In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and...In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.展开更多
壤全氮、土壤有机质的测定对农业生产和科学研究都有重要意义。因此在许多实验室里,土壤全氮、土壤有机质都被作为一项常规分析项目。土壤全氮量的测定百余年来沿用杜马氏法和凯氏定氮法。测定土壤有机质的方法主要有3种:干烧法、化学...壤全氮、土壤有机质的测定对农业生产和科学研究都有重要意义。因此在许多实验室里,土壤全氮、土壤有机质都被作为一项常规分析项目。土壤全氮量的测定百余年来沿用杜马氏法和凯氏定氮法。测定土壤有机质的方法主要有3种:干烧法、化学氧化法、灼烧法,1989年农业部颁布了国标GB9843-88《土壤有机质测定法》。近年来使用元素分析仪(Elementar Vario MACRO)测定土壤C、N也越来越广泛,元素分析仪是一台用于快速,定量测定元素C、H、N、S的全自动分析仪。用元素分析仪测定C、H、N的方法属于灼烧法,灼烧温度为960摄氏度,对酸性、中性土壤的测定无疑是省时准确的首选。石灰性土壤中由于碳酸盐的存在,在高温灼烧时碳酸盐分解,形成CO2,使土壤有机质的测定结果偏高。降低燃烧管温度测定(630摄氏度),由于样品用锡箔纸包裹,锡箔纸在燃烧管内燃烧生成氧化锡为放热反应,增加燃烧管内的温度高于设定温度,增加碳酸钙的分解测定值偏高,燃烧管温度设定在低于碳酸盐分解点时仪器密封不严实,使测定结果偏低。用盐酸处理土壤中碳酸盐,其后测定有机质时,因土壤中的富里酸溶于酸,使测定结果偏低。因此元素分析仪不适于石灰性土壤有机质的测定。展开更多
文摘Abstract: Physical, chemical and biological soil properties in surface (0-5 cm) and subsurface soil (5-15 cm) were determined in a field experiment conducted with seven treatments consisted of different combinations of fertilizer N (0, 100 and 200 kg N ha^-1), P (0, 22 and 44 kg P2O5 ha^-1) and K (0, 41 and 82 kg K2O ha^-1) applied both to summer-grown maize (Zea mays L.) and winter-grown wheat (Triticum aestivum L.) crops continuously for 37 years under irrigated subtropical conditions. Application of N, P and K significantly increased water stable aggregates and had profound effects in increasing the mean weight diameter as well as the formation of macro-aggregates, which were highest in both surface (81%) and subsurface (74%) soil layers with application of 100 kg N + 22 kg P2O5 + 41 kg K2O ha^-1 (N100P22K41). The N100P22K41 treatment also enhanced total organic C (TOC) from 4.4 g kg^-1 in no-NPK control to 4.8 g kg^-1in surface layer and from 3.3 to 4.1 g kg1 in subsurface layer leading to the 20% higher TOC stocks in 0-15 cm soil. The labile C and N fractions such as water soluble C, particulate and light fraction organic matter, potentially mineralizable N and microbial biomass were also highest under the optimized balanced application of N100P22K41. Relatively higher increase in all labile fractions of C and N as proportion of TOC and total N, respectively suggested that these are potential indicators to reflect changes in management practices long before changes in TOC and TN are detectable. These results demonstrated that optimized balanced application of N, P and K is crucial for improving soil health ensuring long-term sustainability of farming systems in semiarid subtropical soils.
基金Key Project of Chinese Academy of Sciences, No.ZKHZ-3-06
文摘Soil sediment samples of 10 layers with a spacing of 10 cm each were collected in different floodplain zones adjacent to Huolin River in the Xianghai Nature Reserve, and contents of total N, total P and organic matters were analyzed. The results showed that contents of total N, total P and organic matters were generally decreasing with the increase of distance from sample locations to the river channel, and contents of the three items were generally higher in the upper soil layer than that in the lower soil layer. The content variations displayed how flooding functions influenced nutrient matter content variations in floodplain soils since the flood inundation frequencies of the sample locations varied. The correlation analysis displayed that there were remarkable relativities between total N, total P and organic matters within definite spatial distance from the Huolin River channel.
基金Project supported by the National Key Basic Research Support Foundation(NKBRSF)(No.G1999011707)and the National Natural Science Foundation of China(NFSC)(Nos.49890330,30230230 and 30070429).
文摘Mineralizable N and organic N components in different layers (0~15, 15~30,30~45, 45~60, 60~80 and 80~100 cm) of six soils with different fertilities sampled from YongshouCounty, Shaanxi Province, China, were determined by the aerobic incubation method and the Bremnerprocedure, respectively. Correlation, multiple regression and path analyses were performed to studythe relation of mineralizable N to organic N components. Results of correlation and regressionanalyses showed that the amounts of the N mineralized were parallel to, and significantly correlatedwith, the total acid hydrolyzable N, but was not so with the acid-insoluble N. Of the hydrolyzableN, the amino acid N and the ammonia N had a highly consistent significant correlation with themineralized N, and their partial regression coefficients were significant in the regressionequations, showing their importance in contribution to the mineralizable N. The amino sugar N, onthe other hand, had a relatively high correlation with the mineralized N, but their partialregression coefficients were not significant in the regression equations. In contrast, thehydrolyzable unknown N had no such relations. Path analysis further indicated that the amino acid Nand ammonia N made great direct contributions to the mineralized N, but the contributions of theamino sugar N were very low. These strongly suggested that the mineralized N in the soils tested wasmainly from the hydrolyzable N, particularly the amino acid N and ammonia N which are the majorsources for its production.
基金The Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHIN-ARE2014-03-04-03 and CHINARE2014-04-03-05the National Natural Science Foundation of China under contract No.41125020+1 种基金the 5th Chinese Arctic Research Programthe Polar Science Strategic Research Foundation of China under contract No.20120307
文摘Stable carbon and nitrogen isotopic composition of particulate organic matter (POM) were measured for samples collected from the Bering Sea in 2010 summer. Particulate organic carbon (POC) and particulate nitrogen (PN) showed high concentrations in the shelf and slope regions and decreased with depth in the slope and basin, indicating that biological processes play an important role on POM distribution. The low C/N ratio and heavy isotopic composition of POM, compared to those from the Alaska River, suggested a predominant contribution of marine biogenic organic matter in the Bering Sea. The fact thatδ^13Candδ^15Ngenerally increased with depth in the Bering Sea basin demonstrated that organic components with light carbon or nitrogen were decomposed preferentially during their transport to deep water. However, the highδ^13Candδ^15Nobserved in shelf bottom water were mostly resulted from sediment resuspension.
基金This work was supported by the National Natural Science Foundation of China(Nos.U1901213,41466010,41676008)the China National Key Research and Development Plan Project(No.2016YFC1401403)+3 种基金the Guangdong Natural Science Foundation of China(Nos.2016 A0303120042020A1515010500)the Project of Enhancing School with Innovation of Guangdong Ocean University(Nos.GDOU2016050260,230419097)the Marine Science Research Team Project of Guangdong Ocean University(No.002026002004).
文摘In order to understand origin and fate of particulate organic matter,the isotopic composition(δ^(13)C andδ^(15)N),total or-ganic carbon content,total nitrogen content,and C/N ratios were measured for suspended particulate organic matter(POM)collected from the northern South China Sea(NSCS)during summer.Our study revealed thatδ^(13)C generally decreased from land to sea,and elevatedδ^(13)C occurred at the nearshore stations,suggesting that POC was mainly contributed from the eutrophic level and microbial activity.Moreover,the distribution ofδ^(15)N values were complicated,and heterotrophic modification was responsible for higherδ^(15)N in the nearshore stations.These distribution patterns ofδ^(13)C andδ^(15)N in the nearshore stations may be associated with the intensifi-cation of human activity in the coast.Based on the Stable Isotope Analysis in R model,65%of POM was contributed by marine or-ganic matter in the NSCS,20%by terrestrial inputs,and 15%by freshwater algae.
文摘Soil organic carbon and nitrogen are used as indexes of soil quality assessment and sustainable land use management. At the same time, soil C/N ratio is a sensitive indicator of soil quality and for assessing the carbon and nitrogen nutrition balance of soils. We studied the characteristics of soil organic carbon and total nitrogen by investigating a large number of apple orchards in major apple production areas in China. High apple orchard soil organic carbon content was observed in the provinces of Heilongjiang, Xinjiang, and Yunnan, whereas low content was found in the provinces of Shandong, Henan, Hebei, and Shaanxi, with the values ranging between 6.44 and 7.76 g·kg-1. Similar to soil organic carbon, soil total nitrogen content also exhibited obvious differences in the 12 major apple producing provinces. Shandong apple orchard soil had the highest total nitrogen content (1.26 g·kg-1), followed by Beijing (1.23 g·kg-1). No significant difference was noted between these two regions, but their total nitrogen content was significantly higher than the other nine provinces, excluding Yunnan. The soil total nitrogen content for Xinjiang, Heilongjiang, Hebei, Henan, and Gansu was between 0.87 and 1.03 g·kg-1, which was significantly lower than that in Shandong and Beijing, but significantly higher than that in Liaoning, Shanxi, and Shaanxi. Six provinces exhibited apple orchard soil C/N ratio higher than 10, including Heilongjiang (15.42), Xinjiang (13.38), Ningxia (14.45), Liaoning (12.24), Yunnan (11.03), and Gansu (10.63). The soil C/N ratio was below 10 in the remaining six provinces, in which the highest was found in Shaanxi (9.47), followed by Beijing (8.98), Henan (7.99), and Shanxi (7.62), and the lowest was found in Hebei (6.80) and Shandong (6.05). Therefore, the improvement of soil organic carbon should be given more attention to increase the steady growth of soil C/N ratio.
基金Project(2017GK2233)supported by the Science and Technology Innovation Program of Hunan Provine,ChinaProject(2017JJ1034)supported by the Natural Science Foundation of Hunan Province,China。
文摘The purpose of this study was to examine the sedimentary facies characteristics of lower Cambrian Niutitang Formation(∈1n)in South China,to reveal the mechanism of organic matter enrichment,and to guide exploration of shale gas.Macro investigation and experimental analyses were used to assess the lithology in detail,total organic matter mass fraction w(TOC),mineral composition,and trace element characteristics of∈1n.The influencing factors of organic matter enrichment were discussed extensively,and a sedimentary facies mode was suggested.In the early stage of∈1n,the locations of Well E’yangye 1,Well Ciye 1,Well Changye 1,and Well Anye 1 respectively develop,platform inner sag,outer shelf,Jiangnan slope belt,and South China detention basin.In the late stage of∈1n,the sedimentary facies evolve with decreasing sea level.The study area presents a complete three-step basin in the Early Cambrian.In the early stage of∈1n,the first step is the Yangtze carbonate platform,the second step is the outer shelf and slope,and the third step is the deep-water basin.From the Yangtze carbonate platform to the deep-water basin,w(TOC)and the mass fraction of quartz gradually increase,the mass fraction of carbonate mineral decreases,and the mass fraction of clay mineral is higher in the second step.The sea level fluctuation results in a higher w(TOC)vertically in the lower∈1n shale,and the paleogeographic(provenance)conditions lead to better horizontal development of organic matter in the outer shelf,slope and detention basin.Trace elements are abundant in the lower∈1n,and w(TOC)is correlated positively with many trace elements.In the outer shelf,slope,and adjacent areas,hydrothermal activity and upwelling current bring nutrient-rich material and promote organic matter enrichment under a strong reducing condition.Deep-shelf,slope and deep-water basin are the best facies for the formation and preservation of organic matter,especially deep-water basin facies.It remains necessary to strengthen the exploration of shale gas in the deep-water basin of∈1n in central Hunan,China.
基金supported by the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences (CAAS-CSAL-202302 and GY2023-12-7)the Fundamental Research Funds for Central Non-Profit Scientific Institutions, China (1610132019014)the National Key Research and Development Program of China (2016YFD0200101 and 2018YFD0200804)。
文摘To understand the long-term effects of combined organic and chemical nitrogen fertilization on soil organic C(SOC) and total N(TN), we conducted a 30-year field experiment with a wheat–maize rotation system on the Huang-HuaiHai Plain during 1990–2019. The experimental treatments consisted of five fertilizer regimes: no fertilizer(control), chemical fertilizer only(NPK), chemical fertilizer with straw(NPKS), chemical fertilizer with manure(NPKM), and 1.5 times the rate of NPKM(1.5NPKM). The NPK, NPKS, and NPKM treatments had equal N inputs. The crop yields were measured over the whole experimental duration. Soil samples were collected from the topsoil(0–10 and 10–20 cm) and subsoil(20–40 cm) layers for assessing soil aggregates and taking SOC and TN measurements. Compared with the NPK treatment, the SOC and TN contents increased significantly in both the topsoil(24.1–44.4% for SOC and 22.8–47.7% for TN) and subsoil layers(22.0–47.9% for SOC and 19.8–41.8% for TN) for the organically amended treatments(NPKS, NPKM and 1.5NPKM) after 30 years, while no significant differences were found for the average annual crop yields over the 30 years of the experiment. The 0–10 cm layer of the NPKS treatment and the 20–40 cm layer of the NPKM treatment had significantly higher macroaggregate fraction mass proportions(19.8 and 27.0%) than the NPK treatment. However, the 0–10 and 20–40 cm layers of the 1.5NPKM treatment had significantly lower macroaggregate fraction mass proportions(–19.2 and –29.1%) than the control. The analysis showed that the higher SOC and TN in the soil of organically amended treatments compared to the NPK treatment were related to the increases in SOC and TN protected in the stable fractions(i.e., free microaggregates and microaggregates within macroaggregates), in which the contributions of the stable fractions were 81.1–91.7% of the increase in SOC and 83.3–94.0% of the increase in TN, respectively. The relationships between average C inputs and both stable SOC and TN stocks were significantly positive with R2 values of 0.74 and 0.72(P<0.01) for the whole 40 cm soil profile, which indicates the importance of N for soil C storage. The results of our study provide key evidence that long-term combined organic and chemical nitrogen fertilization, while maintaining reasonable total N inputs, benefited soil C and N storage in both the topsoil and subsoil layers.
基金supported by the National Natural Science Foundation of China (No. 21605060 )the Key Scientific Research Project of Colleges and Universities in Henan Province (No. 20A610006 )。
文摘Current knowledge about the transformation of total mercury and methylmercury(Me Hg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter(DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio(20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg(F3, 46%-60%);while the main form of mercury in C/N 30 was mercuric sulfide(F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance(C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance(C1, 28%-37%) and fulvic-like substance(C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less Me Hg after aerobic composting process, with values of 658%(C/N 20), 1400%(C/N 26) and 139%(C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.
文摘Setting monitoring transect in the middle and shallow water area(altitude 156-172 m) in Three Gorges reservoir hydro-fluctuation belt to research the changing characteristics of the contents of N, P,K,pH and organic matter of the soil which experienced the influence of fluctuation the first time. The results showed that by the influence of water level fluctuating,contents of soil N,P,K,pH and organic matter had reduced in different soil layers in hydro-fluctuation belt.The available N decreased by 41.53%-59.87%,available P decreased by 5.26%- 36.76%,available K decreased by 3.55%-45.56%, total N decreased by 9.52%-40.00%,total P had no change generally,total K had decreased a little, content of organic material decreased by 7.62%- 37.83%%,pH value turned to neutral,changed by 1.73%-9.58%.
基金The National Natural Science Foundation of China under contract Nos 42107251 and 41706089the Natural Science Foundation of Fujian Province under contract No.2020J05232.
文摘The sedimentary record of climate change in the Arctic region is useful for understanding global warming.Kongsfjord is located in the subpolar region of the Arctic and is a suitable site for studying climate change.Glacier retreat is occurring in this region due to climate change,leading to an increase in meltwater outflow with a high debris content.In August 2017,we collected a sediment Core Z3 from the central fjord near the Yellow River Station.Then,we used the widely used chronology method of 210Pb,^(137)Cs,and other parameters to reflect the climate change record in the sedimentary environment of Kongsfjord.The results showed that after the mid-late 1990s,the mass accumulation rate of this core increased from 0.10 g/(cm^(2)·a)to 0.34 g/(cm^(2)·a),while the flux of^(210)Pb_(ex)increased from 125 Bq/(m^(2)·a)to 316 Bq/(m^(2)·a).The higher sedimentary inventory of^(210)Pb_(ex)in Kongsfjord compared to global fallout might have been caused by sediment focusing,boundary scavenging,and riverine input.Similarities between the inventory of^(137)Cs and global fallout indicated that terrestrial particulate matter was the main source of^(137)Cs in fjord sediments.The sedimentation rate increased after 1997,possibly due to the increased influx of glacial meltwater containing debris.In addition,the^(137)Cs activity,percentage of organic carbon(OC),and OC/total nitrogen concentration ratio showed increasing trends toward the top of the core since 1997,corresponding to a decrease in the mass balance of glaciers in the region.The results ofδ^(13)C,δ^(15)N and OC/TN concentration ratio showed both terrestrial and marine sources contributed to the organic matter in Core Z3.The relative contribution of terrestrial organic matter which was calculated by a two-endmember model showed an increased trend since mid-1990s.All these data indicate that global climate change has a significant impact on Arctic glaciers.
文摘The objective of this study was to determine the impact of frequency of broad-leaf crops canola and pea in various crop rotations on pH, total organic C (TOC), total organic N (TON), light fraction organic C (LFOC) and light fraction organic N (LFON) in the 0 - 7.5 and 7.5 - 15 cm soil depths in autumn 2009 after 12 years (1998-2009) on a Dark Brown Chernozem (Typic Boroll) loam at Scott, Saskatchewan, Canada. The field ex-periment contained monoculture canola (herbicide tolerant and blackleg resistant hybrid) and monoculture pea compared with rotations that contained these crops every 2-, 3-, and 4-yr with wheat. There was no effect of crop rotation duration and crop phase on soil pH. Mass of TOC and TON in the 0 - 15 cm soil was greater in canola phase than pea phase in the 1-yr (monoculture) and 2-yr crop rotations, while the opposite was true in the 3-yr and 4-yr crop rotations. Mass of TOC and TON (averaged across crop phases,) in soil generally increased with increasing crop rotation duration, with the maximum in the 4-yr rotation while no difference in the 1-yr and 2-yr rotations. Mass of LFOC and LFON in soil was greater in canola phase than pea phase in the 1-yr, 2-yr and 3-yr rotations, but the opposite was true in the 4-yr rotation. There was no consistent effect of crop rotation duration on mass of LFOC and LFON. The N balance sheet over the 1998 to 2009 period indicated large amounts of unaccounted N for monoculture pea, suggesting a great potential for N loss from the soil-plant system in this treatment through nitrate leaching and/or denitrification. In conclusion, the findings suggest that the quantity of organic C and N can be maximized by increasing duration of crop rotation and by including hybrid canola in the rotation.
基金Supported by The General Program of National Natural Science Foundation of China(312771673)Programs for Science and Technology Development of Tobacco Monopoly Bureau in Guizhou Province(20121126)~~
文摘In order to explore the fertilizing ways and dynamic changes of soil carbon and nitrogen in the main producing areas of tobacco in Guizhou,research was conducted to study the variations of dissolved organic carbon and nitrogen,total organic carbon and nitrogen and their ratio of tobacco-topsoil in organic fertilization pattern and conventional cultivation pattern (No fertilizer as control) by pot experiment.The results were as follows:(1) The effects of different fertilization patterns on soil dissolved organic carbon and nitrogen and total organic carbon and nitrogen were significantly different.The content of DOC,DON,TOC and TON in tobaccotopsoil was decreased with the advancing of growth period in conventional fertilization pattern.In the conventional fertilization pattern,the accumulation of DOC and TOC was increased first and then decreased,and the accumulation of DON and TON was decreased first and then increased.(2) The TOC content at the different growing stage and DOC content at the middle and later stage of tobacco were significantly improved in organic fertilization patterns.The accumulation of DON and TON in the conventional fertilization pattern was significantly higher than those in the organic fertilizer pattern and control at the rosette stage and vigorous stage.In the harvest period,the content of DOC,DON,TOC and TON of tobacco-topsoil in the conventional fertilization and organic fertilization pattern was significantly higher than those in the control.(3)The DOC/DON ratio and the TOC/TiON ratio was increased gradually with the advancing of growth period in conventional fertilization pattern,but they were increased first and then decreased in the organic fertilization pattern and CK.The DOC/DON and TOC/TON ratio of tobacco-topsoil in different fertilization patterns was showed as Y J> CK> CG at the different growing stage.The experiment results revealed that:The organic fertilization pattern may improve significantly the accumulation of DOC,DON,TOC and TON of tobacco-topsoil at the middle and later stage and the DOC/DON and TOC/TON ratio at the different growth stage.It contributed to the continuous and balanced supply of nutrients at the middle and later stage of tobacco and the soil fertility.
文摘壤全氮、土壤有机质的测定对农业生产和科学研究都有重要意义。因此在许多实验室里,土壤全氮、土壤有机质都被作为一项常规分析项目。土壤全氮量的测定百余年来沿用杜马氏法和凯氏定氮法。测定土壤有机质的方法主要有3种:干烧法、化学氧化法、灼烧法,1989年农业部颁布了国标GB9843-88《土壤有机质测定法》。近年来使用元素分析仪(Elementar Vario MACRO)测定土壤C、N也越来越广泛,元素分析仪是一台用于快速,定量测定元素C、H、N、S的全自动分析仪。用元素分析仪测定C、H、N的方法属于灼烧法,灼烧温度为960摄氏度,对酸性、中性土壤的测定无疑是省时准确的首选。石灰性土壤中由于碳酸盐的存在,在高温灼烧时碳酸盐分解,形成CO2,使土壤有机质的测定结果偏高。降低燃烧管温度测定(630摄氏度),由于样品用锡箔纸包裹,锡箔纸在燃烧管内燃烧生成氧化锡为放热反应,增加燃烧管内的温度高于设定温度,增加碳酸钙的分解测定值偏高,燃烧管温度设定在低于碳酸盐分解点时仪器密封不严实,使测定结果偏低。用盐酸处理土壤中碳酸盐,其后测定有机质时,因土壤中的富里酸溶于酸,使测定结果偏低。因此元素分析仪不适于石灰性土壤有机质的测定。