期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Effects of Anthropogenic Disturbance on Sediment Organic Carbon Mineralization Under Different Water Conditions in Coastal Wetland of a Subtropical Estuary 被引量:4
1
作者 MOU Xiaojie LIU Xingtu +5 位作者 SUN Zhigao TONG Chuan HUANG Jiafang WAN Siang WANG Chun WEN Bolong 《Chinese Geographical Science》 SCIE CSCD 2018年第3期400-410,共11页
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to inves... The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P < 0.001), and the interaction between human disturbance activities and water conditions was also significant(P < 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil > aquaculture pond sediment > soil near the discharge outlet > rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R^2 > 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands. 展开更多
关键词 human disturbance carbon mineralization water conditions coastal wetland
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部