期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Deformations of surface and rock mass in salt mines of Southern Poland 被引量:2
1
作者 J .Szewczyk G. Kortas 《中国有色金属学会会刊:英文版》 CSCD 2005年第S1期310-314,共5页
关键词 rock Deformations of surface and rock mass in salt mines of Southern Poland
下载PDF
Mass Rock Fall Prediction in Zhezkazgan Mines at the Basis of Seismic Regime Analyzing.
2
《CT理论与应用研究(中英文)》 2000年第z1期91-94,共4页
关键词 mass rock Fall Prediction in Zhezkazgan mines at the Basis of Seismic Regime Analyzing rock
下载PDF
Some Challenges of Deep Mining 被引量:19
3
作者 Charles Fairhurst 《Engineering》 SCIE EI 2017年第4期527-537,共11页
An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through su... An increased global supply of minerals is essential to meet the needs and expectations of a rapidly rising world population. This implies extraction from greater depths. Autonomous mining systems, developed through sustained R&D by equipment suppliers, reduce miner exposure to hostile work environments and increase safety. This places increased focus on "ground control" and on rock mechanics to define the depth to which minerals may be extracted economically. Although significant efforts have been made since the end of World War II to apply mechanics to mine design, there have been both technological and organizational obstacles. Rock in situ is a more complex engineering material than is typically encountered in most other engineering disciplines. Mining engineering has relied heavily on empirical procedures in design for thousands of years. These are no longer adequate to address the challenges of the 21st century, as mines venture to increasingly greater depths. The development of the synthetic rock mass (SRM) in 2008 provides researchers with the ability to analyze the deformational behavior of rock masses that are anisotropic and discontinuous-attributes that were described as the defining characteristics of in situ rock by Leopold Mfiller, the president and founder of the International Society for Rock Mechanics (ISRM), in 1966. Recent developments in the numerical modeling of large-scale mining operations (e.g., caving) using the SRM reveal unanticipated deformational behavior of the rock. The application of massive parallelization and cloud computational techniques offers major opportunities: for example, to assess uncertainties in numerical predictions: to establish the mechanics basis for the empirical rules now used in rock engineering and their validity for the prediction of rock mass behavior beyond current experience: and to use the discrete element method (DEM) in the optimization of deep mine design. For the first time, mining-and rock engineering-will have its own mechanics-based Ulaboratory." This promises to be a major tool in future planning for effective mining at depth. The paper concludes with a discussion of an opportunity to demonstrate the application of DEM and SRM procedures as a laboratory, by back-analysis of mining methods used over the 80-year history of the Mount Lvell Copper Mine in Tasmania. 展开更多
关键词 Deep mining rock discontinuities Synthetic rock mass Mineral resources rock mechanics
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部