Minimal cut sets (or prime implicants: minimal combinations of basic event conditions leading to system failure) are important information for reliability/safety analysis and design. To obtain minimal cut sets for ...Minimal cut sets (or prime implicants: minimal combinations of basic event conditions leading to system failure) are important information for reliability/safety analysis and design. To obtain minimal cut sets for general non-coherent fault trees, including negative basic events or multi-valued basic events, a special procedure such as the consensus rule must be applied to the results obtained by logical operations for coherent fault trees, which will require more steps and time. This paper proposes a simple method for a non-coherent fault tree, whose top event is represented as an AND combination of monotonic sub-trees. A "monotonic" sub-tree means that it does not have both positive and negative representations for each basic event. It is proven that minimal cut sets can be obtained by a conventional method for coherent fault trees. An illustrative example of a simple event tree analysis shows the detail and characteristics of the proposed method.展开更多
This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic ...This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.展开更多
Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper...Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper, and the Minimal Cut Set, the Minimal Path Set and the Importance were introduced to develop the methodology. These concepts are employed to analyze the influence each event has on the top event ? the gas explosion, so as to find out about the defects of the system and accordingly help to work out the emphasis of the precautionary work and some preventive measures as well. The results of the safety analysis are in accordance with the practical requirements; therefore the preventive measures are certain to work effectively. In brief, according to the research CD is so effective in the safety analysis and the safety assessment that it can be a qualitative and quantitative method to predict the accident as well as offer some effective measures for the investigation, the prevention and the control of the accident.展开更多
A consecutive k out of n: F System, with n linearly arranged i. i. d. components, is examined. This paper gives an exact formula for computing the system's reliability directly. Complexity of this algorithm is...A consecutive k out of n: F System, with n linearly arranged i. i. d. components, is examined. This paper gives an exact formula for computing the system's reliability directly. Complexity of this algorithm is an O(n k). Further more, the system's reliability can be computed more quickly and more effectively from this formula than those previously given.展开更多
In the traditional method for the reliability analysis of fault-tolerant system,the system structure is described by means of binary decision diagram (BDD) and Markov process,and then the reliability indexes are calcu...In the traditional method for the reliability analysis of fault-tolerant system,the system structure is described by means of binary decision diagram (BDD) and Markov process,and then the reliability indexes are calculated.However,as the size of system augments,the size of state space will increase exponentially.Additionally,Markov approach requires that the failure and repair time of the components obey an exponential distribution.In this study,by combining dynamic fault tree (DFT) and numerical simulation based on the minimal sequence cut set (MSCS),a new method to evaluate reliability of fault-tolerant system with repairable components is proposed.The method presented does not depend on Markov model,so that it can effectively solve the problem of the state-space combination explosion.Moreover,it is suitable for systems whose failure and repair time obey an arbitrary distribution.Therefore,our method is more flexible than the traditional method.At last,an example is given to verify the method.展开更多
文摘Minimal cut sets (or prime implicants: minimal combinations of basic event conditions leading to system failure) are important information for reliability/safety analysis and design. To obtain minimal cut sets for general non-coherent fault trees, including negative basic events or multi-valued basic events, a special procedure such as the consensus rule must be applied to the results obtained by logical operations for coherent fault trees, which will require more steps and time. This paper proposes a simple method for a non-coherent fault tree, whose top event is represented as an AND combination of monotonic sub-trees. A "monotonic" sub-tree means that it does not have both positive and negative representations for each basic event. It is proven that minimal cut sets can be obtained by a conventional method for coherent fault trees. An illustrative example of a simple event tree analysis shows the detail and characteristics of the proposed method.
文摘This paper presents an approximate algorithm based on simulated annealing to achieve the maximum probability of the minimal cut sets for a fault tree. Near optimal minimal cut sets and important sequence of the basic events are also solved by the method. Computer simulations show that the algorithm performs very well.
基金Supported by the Natural Science Foundation of China (No. 59677009) the National Research Foundation for the Doctoral Program of Higher Education of China (No.99061116)
文摘Causality Diagram (CD) is a new graphical knowledge representation based on probability theory. The application of this methodology in the safety analysis of the gas explosion in collieries was discussed in this paper, and the Minimal Cut Set, the Minimal Path Set and the Importance were introduced to develop the methodology. These concepts are employed to analyze the influence each event has on the top event ? the gas explosion, so as to find out about the defects of the system and accordingly help to work out the emphasis of the precautionary work and some preventive measures as well. The results of the safety analysis are in accordance with the practical requirements; therefore the preventive measures are certain to work effectively. In brief, according to the research CD is so effective in the safety analysis and the safety assessment that it can be a qualitative and quantitative method to predict the accident as well as offer some effective measures for the investigation, the prevention and the control of the accident.
文摘A consecutive k out of n: F System, with n linearly arranged i. i. d. components, is examined. This paper gives an exact formula for computing the system's reliability directly. Complexity of this algorithm is an O(n k). Further more, the system's reliability can be computed more quickly and more effectively from this formula than those previously given.
文摘In the traditional method for the reliability analysis of fault-tolerant system,the system structure is described by means of binary decision diagram (BDD) and Markov process,and then the reliability indexes are calculated.However,as the size of system augments,the size of state space will increase exponentially.Additionally,Markov approach requires that the failure and repair time of the components obey an exponential distribution.In this study,by combining dynamic fault tree (DFT) and numerical simulation based on the minimal sequence cut set (MSCS),a new method to evaluate reliability of fault-tolerant system with repairable components is proposed.The method presented does not depend on Markov model,so that it can effectively solve the problem of the state-space combination explosion.Moreover,it is suitable for systems whose failure and repair time obey an arbitrary distribution.Therefore,our method is more flexible than the traditional method.At last,an example is given to verify the method.