This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors ...This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.展开更多
基金supported by the Council of Scientific and Industrial Research(CSIR),New Delhi,India under Grant No.09/013(0474)/2012-EMR-1
文摘This paper considers a nonsmooth semi-infinite minimax fractional programming problem(SIMFP) involving locally Lipschitz invex functions. The authors establish necessary optimality conditions for SIMFP. The authors establish the relationship between an optimal solution of SIMFP and saddle point of scalar Lagrange function for SIMFP. Further, the authors study saddle point criteria of a vector Lagrange function defined for SIMFP.