针对第六代移动通信(The 6th Generation Mobile Communication,6G)中一体化需求感知精度较低的问题,提出一种基于最小频移键控(Minimum Shift Keying,MSK)与线性调频(Linear Frequency Modulation,LFM)的光载太赫兹通感一体化信号的产...针对第六代移动通信(The 6th Generation Mobile Communication,6G)中一体化需求感知精度较低的问题,提出一种基于最小频移键控(Minimum Shift Keying,MSK)与线性调频(Linear Frequency Modulation,LFM)的光载太赫兹通感一体化信号的产生与传输方案。利用MSK-LFM信号在太赫兹频段同时实现通信和感知测距,在通信接收端使用数字信号处理降低无线通信误码率,在感知接收端利用去啁啾技术进行测距。仿真结果表明,MSK-LFM信号在235 GHz太赫兹频段能够实现8 Gbit·s^(-1)的无线通信速率,在距离感知精度上达到了3.75 cm的距离分辨率,且通信误码率低于软判决阈值。当直流偏置为0.8时,8 GHz带宽的MSK-LFM信号通感性能达到平衡,该方案与M相移键控与线性调频(Phase Shift Keying,Linear Frequency Modulation,MPSK-LFM)信号方案相比,在相同通信速率下具有更高的感知测距精度。展开更多
文摘为了寻找最佳跳频调制方式,通过分析各种调制方式下不同信噪比对误码率的影响和不同BT值对GM-SK(Gauss filtered Minimum Shift frequency Keying)调制系统误码率的影响,说明GMSK调制方式的合理性和必要性。经仿真得出,在低信噪比-4 dB条件下,系统选用GMSK方式可获得0.03%的误码率,优于2FSK(2-ary Frequency Shift Keying)(3.33%),略差于BPSK(Binary Phase Shift Keying)(0.017%)和MSK(MinimumShift frequency Keying)(0.02%);同时频带利用方面GMSK为最优。利用Matlab中的Simulink通信工具箱模拟仿真GMSK跳频信号的调制与解调过程,设计出一种GMSK跳频通信系统。测试结果表明,该系统可在没有差错控制的条件下得到误码率为0.5%的通信效果。