Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by u...Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by using an NComputing device that can allow multi-users but only one computer is needed. This intuitively can save energy, space as well as cost. In this paper, we propose a simple and realistic NComputing architecture to study the energy and power-efficient consumption of desktop computer systems by using the NComputing device. We also propose new approaches to estimate the reliability of k-out-of-n systems based on the delta method. The k-out-of-n system consisting of n subsystems works if and only if at least k-of-the-n subsystems work. More specificly, we develop approaches to obtain the reliability estimation for the k-out-of-n systems which is composed of n independent and identically distributed subsystems where each subsystem (or energy-efficient usage application) can be assumed to follow a two-parameter exponential lifetime distribution function. The detailed derivations of reliability estimation of k-out-of-n systems based on the biased-corrected estimator, known as delta method, the uniformly minimum variance unbiased estimate (UMVUE) and maximum likelihood estimate (MLE) are discussed. An energy-management NComputing application is discussed to illustrate the reliability results in terms of the energy consumption usages of a computer system with qua(t-core, 8 GB of RAM, and a GeForce 9800GX-2 graphics card to perform various complex applications. The estimated reliability values of systems based on the UMVUE and the delta method differ only slightly. Often the UMVUE of reliability for a complex system is a lot more difficult to obtain, if not impossible. The delta method seems to be a simple and better approach to obtain the reliability estimation of complex systems. The results of this study also show that, in practice, the NComputing architecture improves both energy cost saving and energy efficient living spaces.展开更多
Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and th...Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and the analysis of variance (Hendreson III's) estimate of variance components being uniformly minimum variance unbiased estimates simultaneously. This result can be applied to the problems of finding uniformly optimal unbiased tests and uniformly most accurate unbiased confidential interval on parameters of interest, and for finding equivalences of several common estimates of variance components.展开更多
基金supported by Rutgers CCC Green Computing Initiative
文摘Opting to follow the computing-design philosophy that the best way to reduce power consumption and increase energy efficiency is to reduce waste, we propose an architecture with a very simple ready-implementation by using an NComputing device that can allow multi-users but only one computer is needed. This intuitively can save energy, space as well as cost. In this paper, we propose a simple and realistic NComputing architecture to study the energy and power-efficient consumption of desktop computer systems by using the NComputing device. We also propose new approaches to estimate the reliability of k-out-of-n systems based on the delta method. The k-out-of-n system consisting of n subsystems works if and only if at least k-of-the-n subsystems work. More specificly, we develop approaches to obtain the reliability estimation for the k-out-of-n systems which is composed of n independent and identically distributed subsystems where each subsystem (or energy-efficient usage application) can be assumed to follow a two-parameter exponential lifetime distribution function. The detailed derivations of reliability estimation of k-out-of-n systems based on the biased-corrected estimator, known as delta method, the uniformly minimum variance unbiased estimate (UMVUE) and maximum likelihood estimate (MLE) are discussed. An energy-management NComputing application is discussed to illustrate the reliability results in terms of the energy consumption usages of a computer system with qua(t-core, 8 GB of RAM, and a GeForce 9800GX-2 graphics card to perform various complex applications. The estimated reliability values of systems based on the UMVUE and the delta method differ only slightly. Often the UMVUE of reliability for a complex system is a lot more difficult to obtain, if not impossible. The delta method seems to be a simple and better approach to obtain the reliability estimation of complex systems. The results of this study also show that, in practice, the NComputing architecture improves both energy cost saving and energy efficient living spaces.
基金Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality PHR (IHLB)National Natural Science Foundation of China (NSFC) (10801005) and (NSFC) (10771010)the Intramural Research Program of the National Institute of Child Health and Human Development,National Institute of Health
文摘Problems of the simultaneous optimal estimates and the optimal tests in general mixed models are considered. A necessary and sufficient condition is presented for the least squares estimate of the fixed effects and the analysis of variance (Hendreson III's) estimate of variance components being uniformly minimum variance unbiased estimates simultaneously. This result can be applied to the problems of finding uniformly optimal unbiased tests and uniformly most accurate unbiased confidential interval on parameters of interest, and for finding equivalences of several common estimates of variance components.