期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Development of minimum tie line length method for determination of minimum miscible pressure in gas injection process
1
作者 Ehsan Zareie shirazani Taraneh Jafari Behbahani 《Petroleum Research》 2019年第2期173-180,共8页
Gas injection process is a very important technology in enhanced oil recovery.Minimum miscible pressure is one of the key parameters in gas injection processes.Various experimental methods such as slim tube are used t... Gas injection process is a very important technology in enhanced oil recovery.Minimum miscible pressure is one of the key parameters in gas injection processes.Various experimental methods such as slim tube are used to measure MMP.These methods are costly and time consuming.Recently computational methods are used in order to achieve a cost-effective and reliable technique to evaluate MMP.In this work,a new methodology has been proposed for determination of MMP using the minimum tie line length method.A real mixing cell model was developed to estimate the MMP,MME and key tie lines.This method is simple,robust,and faster than conventional one-dimensional simulation of slim tube.The new mixing cells method can accurately determine the whole key tie lines to a shift,regardless of the number of injection gas and reservoir fluid components.Unlike other methods of mixing cells,this method automatically corrects dispersion by additional contacts to achieve the low variation domain of tie line slope.Also,the determination and implementation of the minimum miscibility enrichment are investigated. 展开更多
关键词 minimum miscible pressure minimum miscibility enrichment Multiple mixing cells method Enhanced oil recovery minimum tie line length method
原文传递
An improved correlation to determine minimum miscibility pressure of CO2–oil system
2
作者 Guangying Chen Hongxia Gao +3 位作者 Kaiyun Fu Haiyan Zhang Zhiwu Liang Paitoon Tontiwachwuthikul 《Green Energy & Environment》 CSCD 2020年第1期97-104,共8页
An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MM... An accurate and reliable estimation of minimum miscibility pressure(MMP) of CO2-oil system is a critical task for the design and implementation of CO2 miscible displacement process.In this study,an improved CO2-oil MMP correlation was developed to predict the MMP values for both pure and impure CO2 injection cases based on ten influential factors,i.e.reservoir temperature(TR),molecular weight of C7+oil components(MWC7+),mole fraction of volatile oil components(xvol),mole fraction of C2-C4 oil components(xC2-C4),mole fraction of C5-C6 oil components(xCs-5-C6),and the gas stream mole fractions of CO2(yCO2),H2S(yH2S),C1(yC1),hydrocarbons(yHC)and N2(yN2).The accuracy of the improved correlation was evaluated against experimental data reported in literature concurrently with those estimated by several renowned correlations.It was found that the improved correlation provided higher prediction accuracy and consistency with literature experimental data than other literature correlations.In addition,the predictive capability of the improved correlation was further validated by predicting an experimentally measured CO2-Oil MMP data,and it showed an accurate result with the absolute deviation of 4.15%.Besides,the differential analysis of the improved correlation was analyzed to estimate the impact of parameters uncertainty in the original MMP data on the calculated results.Also,sensitivity analysis was performed to analyze the influence of each parameter on MMP qualitatively and quantitatively.The results revealed that the increase of xC2-C4,xC5-C6 and yH2 S lead to the decrease of MMP,while the increase of TR,MWC7+,xvol,yCO2,YC1,yHC and yN2 tend to increase the MMP.Overall,the relevance of each parameter with MMP follows the order of TR> xC5-C6> MWC7+> xvol> yH2 S> yHC> yCO2>yC1>yN2>xC2-C4. 展开更多
关键词 minimum miscibility pressure CORRELATION CO2 miscible flooding Enhanced oil recovery
下载PDF
Estimation of Minimum Miscibility Pressure for Flue Gas Injection Using Soft Experimentations
3
作者 Oluwaseun Oyinloye Naeema Al Darmaki +2 位作者 Mohamed Al Zarooni Fathi Boukadi Hildah Nantongo 《Natural Resources》 2021年第11期363-381,共19页
A new approach is demonstrated in which soft experimentation can be performed for MMP measurements, thus replacing the common practice of slim tube displacement laboratory experiments. Recovery potential from oil rese... A new approach is demonstrated in which soft experimentation can be performed for MMP measurements, thus replacing the common practice of slim tube displacement laboratory experiments. Recovery potential from oil reservoirs by miscible flue gas injection was studied by slim tube and field-scale numerical simulation using two flue gases and seven crude oils sampled at different depths in three candidate reservoirs. The soft experimentations were conducted using Eclipse300<sup>TM</sup>, a three-phase compositional simulator. This study investigates minimum miscibility pressure (MMP), a significant miscible gas injection project screening tool. Successful design of the project is contingent to the accurate determination of the MMP. This study evaluates effects of important factors such as injection pressure, oil component composition, and injection gas composition on the MMP and recovery efficiency for slim tube and field-scale displacements. Two applicable MMP correlations were used for comparison and validation purposes. 展开更多
关键词 Empirical Correlation minimum Miscibility pressure Slim-Tube Soft Experimentation Field-Scale Numerical Simulation Flue Gas Injection
下载PDF
Miscibility of light oil and flue gas under thermal action
4
作者 XI Changfeng WANG Bojun +7 位作者 ZHAO Fang HUA Daode QI Zongyao LIU Tong ZHAO Zeqi TANG Junshi ZHOU You WANG Hongzhuang 《Petroleum Exploration and Development》 SCIE 2024年第1期164-171,共8页
The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and hi... The miscibility of flue gas and different types of light oils is investigated through slender-tube miscible displacement experiment at high temperature and high pressure.Under the conditions of high temperature and high pressure,the miscible displacement of flue gas and light oil is possible.At the same temperature,there is a linear relationship between oil displacement efficiency and pressure.At the same pressure,the oil displacement efficiency increases gently and then rapidly to more than 90% to achieve miscible displacement with the increase of temperature.The rapid increase of oil displacement efficiency is closely related to the process that the light components of oil transit in phase state due to distillation with the rise of temperature.Moreover,at the same pressure,the lighter the oil,the lower the minimum miscibility temperature between flue gas and oil,which allows easier miscibility and ultimately better performance of thermal miscible flooding by air injection.The miscibility between flue gas and light oil at high temperature and high pressure is more typically characterized by phase transition at high temperature in supercritical state,and it is different from the contact extraction miscibility of CO_(2) under conventional high pressure conditions. 展开更多
关键词 light oil flue gas flooding thermal miscible flooding miscible law distillation phase transition minimum miscible pressure minimum miscible temperature
下载PDF
Estimation of the minimum miscibility pressure for CO_(2)ecrude-oil systems by molecular dynamics simulation
5
作者 Wuge Cui Yunfeng Liang +3 位作者 Yoshihiro Masuda Takeshi Tsuji Toshifumi Matsuoka Haruka Takahashi 《Petroleum Research》 EI 2023年第1期1-10,共10页
CO_(2)injection is an effective enhanced oil recovery technique for energy security with the benefits of carbon neutrality.To reach the maximum oil recovery,the miscible condition between CO_(2)and oil needs to be mai... CO_(2)injection is an effective enhanced oil recovery technique for energy security with the benefits of carbon neutrality.To reach the maximum oil recovery,the miscible condition between CO_(2)and oil needs to be maintained in the reservoir,which requires the operation pressure to be higher than the minimum miscibility pressure(MMP).There are two types of MMPs:the first-contact MMP(FC-MMP)and the multi-contact MMP(MC-MMP).In this study,molecular dynamics simulations were performed for the CO_(2)eoil interface system using two simplified digital oil models:a Bakken dead oil with four lumping components and a live-crude-oil model with 50 types of oil molecules but with no asphaltenes and heavy oil fractions.The vanishing interfacial tension method was used to predict the MMP.Different CO_(2)eoil volume ratios were considered to mimic the different degrees of vaporization.To estimate the MMP accurately and rapidly,the interfacial tension in the low-pressure regime was used for the prediction.Consequently,different MMPs were obtained,where the MMP value increased with increasing CO_(2)eoil volume ratio.FC-MMP can be predicted when the CO_(2)eoil volume ratio is sufficiently high.When the CO_(2)eoil volume ratio was approximately 9e10,MMP was closest to the actual MC-MMP value.The condensing and vaporizing mechanism was also studied at the molecular scale.Because pure CO_(2)was used,only the vaporizing effect on MMP occurred.It was found that the intermediate C2eC6 components have the main effect on the MMP calculation.This study can help to establish a computational protocol to estimate FC-MMP and MC-MMP,which are widely used in reservoir engineering. 展开更多
关键词 CO_(2)-EOR minimum miscibility pressure Molecular dynamics simulations Condensing and vaporizing mechanism CO_(2)eoil volume ratio Crude oil
原文传递
A review of chemical-assisted minimum miscibility pressure reduction in CO_(2) injection for enhanced oil recovery 被引量:1
6
作者 Mohamed Almobarak Zangyuan Wu +3 位作者 Daiyu Zhou Kun Fan Yongbing Liu Quan Xie 《Petroleum》 CSCD 2021年第3期245-253,共9页
Miscible CO_(2)injection appears to be an important enhanced oil recovery technique for improving sweep efficiency and eliminating CO_(2)-oil interfacial tension resulting in up to 10%higher oil recovery compared to i... Miscible CO_(2)injection appears to be an important enhanced oil recovery technique for improving sweep efficiency and eliminating CO_(2)-oil interfacial tension resulting in up to 10%higher oil recovery compared to immiscible flooding,in addition to the environmental benefits of reducing greenhouse gas emissions through carbon capturing utilising and storage(CCUS).Moreover,this technique could be similarly applicable to natural gas and nitrogen projects to increase oil recovery and to reduce the associated gas flaring.However,miscible displacement may not be achievable for all reservoirs,in particular,reservoirs with high temperature where high injection pressure would be needed to reach miscibility which likely exceeds the formation fracture pressure.Therefore,to further achieve reservoirs’potential,there is a pressing need to explore a viable means to decrease the miscibility pressure,and thus expand the application envelop of miscible gas injection in reservoirs with high temperatures.In this work,we aim to provide insights into minimum miscibility pressure(MMP)reduction by adding chemicals into CO_(2)phase during injection.We achieved this objective by performing a comprehensive review on chemical-assisted MMP reduction using different chemical additives(e.g.,alcohols,fatty acids,surfactants)and different experimental methodologies.Previous experimental studies have shown that a fraction of chemical additives can yield up to 22%of MMP reduction in CO_(2)-oil system.Based on results analysis,surfactant based chemicals were found to be more efficient compared to alcohol based chemicals in reducing the interfacial tension in the CO_(2)-oil system.Based on the current experimental results,adding chemicals to improve the miscibility and reduce the MMP in the CO_(2)-oil system appears to be a promising technique to increase oil recovery while reducing operating cost.Selection of the effective chemical additives may help to expand the application of miscible gas injection to shallow and high temperature reservoirs.Furthermore,our review provides an overall framework to screen potential chemical additives and an injection strategy to be used for miscible displacement in CO_(2)and/or gas systems. 展开更多
关键词 Enhanced oil recovery Natural gas injection CO2 injection minimum miscibility pressure Chemical-assisted
原文传递
Experimental and simulation determination of minimum miscibility pressure for a Bakken tight oil and different injection gases 被引量:1
7
作者 Sheng Li Peng Luo 《Petroleum》 2017年第1期79-86,共8页
The effective development of unconventional tight oil formations,such as Bakken,could include CO_(2) enhanced oil recovery(EOR)technologies with associated benefits of capturing and storing large quantities of CO_(2).... The effective development of unconventional tight oil formations,such as Bakken,could include CO_(2) enhanced oil recovery(EOR)technologies with associated benefits of capturing and storing large quantities of CO_(2).It is important to conduct the gas injection at miscible condition so as to reach maximum recovery efficiency.Therefore,determination of the minimum miscibility pressure(MMP)of reservoir live oileinjection gas system is critical in a miscible gas flooding project design.In this work,five candidate injection gases,namely CO_(2),CO_(2)-enriched flue gas,natural gas,nitrogen,and CO_(2)-enriched natural gas,were selected and their MMPs with a Bakken live oil were determined experimentally and numerically.At first,phase behaviour tests were conducted for the reconstituted Bakken live oil and the gases.CO_(2) outperformed other gases in terms of viscosity reduction and oil swelling.Rising bubble apparatus(RBA)determined live oileCO2 MMP as 11.9 MPa and all other gases higher than 30 MPa.The measured phase behaviour data were used to build and tune an equation-of-state(EOS)model,which calculated the MMPs for different live oilgas systems.The EOS-based calculations indicated that CO_(2) had the lowest MMP with live oil among the five gases in the study.At last,the commonly-accepted Alston et al.equation was used to calculate live oilepure CO_(2) MMP and effect of impurities in the gas phase on MMP change.The Bakken oile CO_(2) had a calculated MMP of 10.3 MPa from the Alston equation,and sensitivity analysis showed that slight addition of volatile impurities,particularly N_(2),can increase MMP significantly. 展开更多
关键词 Enhanced oil recovery CO_(2)miscible flooding Unconventional tight oil reservoirs Bakken formation minimum miscibility pressure
原文传递
Application of hybrid support vector regression artificial bee colony for prediction of MMP in CO2-EOR process
8
作者 Menad Nait Amar Noureddine Zeraibi 《Petroleum》 CSCD 2020年第4期415-422,共8页
Minimum miscibility pressure(MMP)is a key parameter in the successful design of miscible gases injection such as CO2 flooding for enhanced oil recovery process(EOR).MMP is generally determined through experimental tes... Minimum miscibility pressure(MMP)is a key parameter in the successful design of miscible gases injection such as CO2 flooding for enhanced oil recovery process(EOR).MMP is generally determined through experimental tests such as slim tube and rising bubble apparatus(RBA).As these tests are time-consuming and their cost is very expensive,several correlations have been developed.However,and although the simplicity of these correlations,they suffer from inaccuracies and bad generalization due to the limitation of their ranges of application.This paper aims to establish a global model to predict MMP in both pure and impure CO2-crude oil in EOR process by combining support vector regression(SVR)with artificial bee colony(ABC).ABC is used to find best SVR hyper-parameters.201 data collected from authenticated published literature and covering a wide range of variables are considered to develop SVR-ABC pure/impure CO2-crude oil MMP model with following inputs:reservoir temperature(TR),critical temperature of the injection gas(Tc),molecular weight of pentane plus fraction of crude oil(MWC5+)and the ratio of volatile components to intermediate components in crude oil(xvol/xint).Statistical indicators and graphical error analyses show that SVR-ABC MMP model yields excellent results with a low mean absolute percentage error(3.24%)and root mean square error(0.79)and a high coefficient of determination(0.9868).Furthermore,the results reveal that SVR-ABC outperforms either ordinary SVR with trial and error approach or all existing methods considered in this work in the prediction of pure and impure CO2-crude oil MMP.Finally,the Leverage approach(Williams plot)is done to investigate the realm of prediction capability of the new model and to detect any probable erroneous data points. 展开更多
关键词 CO2-EOR process CO2-Crude oil minimum miscibility pressure Support vector regression(SVR) Artificial bee colony(ABC)
原文传递
Experimental and simulation studies for optimization of waterealternating-gas(CO2)flooding for enhanced oil recovery
9
作者 Swapnil Pancholi Gudendra Singh Negi +2 位作者 Jatin R.Agarwal Achinta Bera Maunish Shah 《Petroleum Research》 2020年第3期227-234,共8页
The paper deals with the screening of injection of water-alternating-gas(WAG)to tap the residual oil saturation left in the reservoir by over and above the water flooding.The detailed mineralogical composition has bee... The paper deals with the screening of injection of water-alternating-gas(WAG)to tap the residual oil saturation left in the reservoir by over and above the water flooding.The detailed mineralogical composition has been studied by X-ray diffraction(XRD)method along with the petrophysical parameters to see their impacts of flow on Himmatnagar(India)sandstone.Saturates,aromatics,resins,and asphaltenes present in the crude oil were determined by ASTM procedure.Minimum miscibility pressure of CO2 with the crude oil was determined and it has been found at 1254 psi based on thermodynamic software.Different WAG ratios of 1:1,1.5:1 and 2:1 have been applied for EOR during studies.Simulation on water injection followed by CO2 has been performed for investigation of the WAG process efficiency.A total 2 cycles of WAG injection was done with water flow rate of 1 ml/min and gas injection pressure around 1250 psi to achieve the better contact miscibility.The experimental data has been generated,compiled and interpreted during different cycles of WAG process.It was observed that WAG ratio 2:1 exhibits highest additional oil recovery around 34%of original oil in place.Increasing WAG ratio yields more additional oil recovery. 展开更多
关键词 Water-alternating-gas injection minimum miscibility pressure Enhanced oil recovery WAG ratio WAG cycle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部