期刊文献+
共找到69篇文章
< 1 2 4 >
每页显示 20 50 100
Energy efficiency and soil conservation in conventional,minimum tillage and no-tillage 被引量:3
1
作者 Teodor Rusu 《International Soil and Water Conservation Research》 SCIE 2014年第4期42-49,共8页
The objective of this research was to determine the capacity of a soil tillage system in soil conservation,in productivity and in energy efficiency.The minimum tillage and no-tillage systems represent good alternative... The objective of this research was to determine the capacity of a soil tillage system in soil conservation,in productivity and in energy efficiency.The minimum tillage and no-tillage systems represent good alternatives to the conventional(plough)system of soil tillage,due to their conservation effects on soil and to the good production of crops(Maize,96%-98%of conventional tillage for minimum tillage,and 99.8%of conventional tillage for no till;Soybeans,103%-112%of conventional tillage for minimum tillage and 117%of conventional tillage for no till;Wheat,93%-97%of conventional tillage for minimum tillage and 117%of conventional tillage for no till.The choice of the right soil tillage system for crops in rotation help reduce energy consumption,thus for maize:97%-98%energy consumption of conventional tillage when using minimum tillage and 91%when using no-tillage;for soybeans:98%energy consumption of conventional tillage when using minimum tillage and 93 when using no-tillage;for wheat:97%-98%energy consumption of conventional tillage when using minimum tillage and 92%when using no-tillage.Energy efficiency is in relation to reductions in energy use,but also might include the efficiency and impact of the tillage system on the cultivated plant.For all crops in rotation,energy efficiency(energy produced from 1 MJ consumed)was the best in no-tillage-10.44 MJ ha-1 for maize,6.49 MJ ha-1 for soybean,and 5.66 MJ ha-1 for wheat.An analysis of energy-efficiency in agricultural systems includes the energy consumed-energy produced-energy yield comparisons,but must be supplemented by soil energy efficiency,based on the conservative effect of the agricultural system.Only then will the agricultural system be sustainable,durable in agronomic,economic and ecological terms.The implementation of minimum and no-tillage soil systems has increased the organic matter content from 2%to 7.6%and water stable aggregate content from 5.6%to 9.6%,at 0-30 cm depth,as compared to the conventional system.Accumulated water supply was higher(with 12.4%-15%)for all minimum and no-tillage systems and increased bulk density values by 0.01%-0.03%(no significant difference)While the soil fertility and the wet aggregate stability have initially been low,the effect of conservation practices on the soil characteristics led to a positive impact on the water permeability in the soil.Availability of soil moisture during the crop growth period led to a better plant watering condition.Subsequent release of conserved soil water regulated the plant water condition and soil structure. 展开更多
关键词 no-tillage minimum tillage YIELD Energy efficiency Soil conservation
原文传递
Differentiation of Soil Fauna Populations in Conventional Tillage and No-Tillage Red Soil Ecosystems 被引量:8
2
作者 HU FENG LI HUIXIN and WU SHANMEI(Nanjing Agriculturol University, Nanjing 210095 (China)) 《Pedosphere》 SCIE CAS CSCD 1997年第4期339-348,共10页
In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evalu... In a field experiment, the populations of major soil fauna groups including earthworms, enchytraeids,arthropods and nematodes were examined in conventional tillage (CT) and no-tillage (NT) red soil ecosystems to evaluate their responses to tillage disturbance. Earthworms, macrry and micro-arthropods were stimulated under NT with earthworms showing the highest population increase by four times, while enchytraeids and nematodes favored CT system, predicting certain adaptability of these animals to plow-disturbed soil environment. On the basis of relative response index it was found that soil fauna was more sensitive to tillage than soil resource base (C and N pools) and microflora. The population structure of soil fauna was also affected by tillage treatments. Analysis on nematode trophic groups showed that bacteria-feeding and plant parasitic nematodes were more abundant in CT soil whereas the proportions of fungivores and omnivorepredators increased in NT soil. Possible reasons for the differentiation in both size and structure of the fauna population were discussed and the ecological significance involved in these changes was emphasized. 展开更多
关键词 conventional tillage no-tillage red soil ecosystems soil fauna
下载PDF
Effect of experimental warming on soil respiration under conventional tillage and no-tillage farmland in the North China Plain 被引量:6
3
作者 TU Chun LI Fa-dong +3 位作者 QIAO Yun-feng ZHU Nong GU Cong-ke ZHAO Xin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第4期967-979,共13页
Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT... Understanding the response of soil respiration to global warming in agro-ecosystem is crucial for simulating terrestrial carbon (C) cycle. We conducted an infrared warming experiment under conventional tillage (CT) and no-tillage (NT) farmland for winter wheat and summer maize rotation system in North China Plain (NCP). Treatments include CT with and without warming (CTW and CTN), NT with and without warming (NTW and NTN). The results indicated that warming had no sig- nificant effect on soil moisture in irrigated farmland of NCP (P〉0.05). The elevated average soil temperature of 1.1-116℃ in crop growing periods could increase annual soil CO2 emission by 10.3% in CT filed (P〉0.05), but significantly increase it by 12.7% in NT field (P〈0.05), respectively. The disturbances such as plowing, irrigation and precipitation resulted in the obvious soil CO2 emission peaks, which contributed 36.6-40.8% of annual soil cumulative CO2 emission. Warming would enhance these soil CO2 emission peaks; it might be associated with the warming-induced increase of autotrophic respiration and heterotrophic respiration. Compared with un-warming treatments, dissolved organic carbon (DOC) and soil microbial biomass carbon (MBC) in warming treatments were significantly increased by 11.6-23.4 and 12.9-23.6%, respectively, indicating that the positive responses of DOC and MBC to warming in both of two tillage systems. Our study highlights that climate warming may have positive effects on soil C release in NCP in association with response of labile C substrate to warming. 展开更多
关键词 global warming conventional tillage no-tillage soil respiration dissolved organic carbon soil microbial biomasscarbon
下载PDF
Effects of Five Years Adoption of No-Tillage Systems for Vegetables Crops in Soil Organic Matter Contents
4
作者 Carlos E. P. Lima ítalo M. R. Guedes +4 位作者 Juscimar da Silva Flávia A. Alcantara Nuno R. Madeira Agnaldo D. F. Carvalho Mariana R. Fontenelle 《Agricultural Sciences》 2018年第1期117-128,共12页
Vegetables productions systems are done normally with intense soil tillage causing a strong decline of soil quality. Use of conservation systems can be an alternative to recover this quality. In order to evaluate the ... Vegetables productions systems are done normally with intense soil tillage causing a strong decline of soil quality. Use of conservation systems can be an alternative to recover this quality. In order to evaluate the effects of such systems on soil organic matter, an experiment has been conducted in randomized blocks design and factorial scheme 3 × 2: three soil management systems (no-tillage;reduced tillage and conventional tillage) and two cover crops (maize single;and intercropping maize with gray velvet bean—Stizolobium niveum);and repeated measures over time. Soil samples were collected before the implementation of the experiment and at the end of each crop cycle until the fifth crop cycle. Carbon associated with humic substances is also determined in 0 - 5 cm, 5 - 10 cm and 10 - 30 cm at the end of the last crop cycle. The SOM content was higher in RT (48.34 g·kg-1) than in the CT (39.48 g·kg-1) at the end of the fifth crop cycle. SOM content in NT (44.92 g·kg-1) was statistically equal to RT and CT, during the same period. In 0 - 5 cm, carbon contents associated to the humic substances present the same behavior of SOM contents in 0 - 10 cm. Probably these results are associated with the capacity of each system to improve superficial contents of SOM stable fractions. It follows that the conservation systems used are alternatives to the cultivation vegetables in order to improve soil organic matter contents. 展开更多
关键词 no-tillage Reduced tillage SOIL Conservation SOIL Management
下载PDF
Evaluating the Effect of Tillage on Carbon Sequestration Using the Minimum Detectable Difference Concept 被引量:13
5
作者 X. M. YANG C. F. DRURY +1 位作者 M. M. WANDER B. D. KAY 《Pedosphere》 SCIE CAS CSCD 2008年第4期421-430,共10页
Three long-term field trials in humid regions of Canada and the USA were used to evaluate the influence of soil depth and sample numbers on soil organic carbon (SOC) sequestration in no-tillage (NT) and moldboard plow... Three long-term field trials in humid regions of Canada and the USA were used to evaluate the influence of soil depth and sample numbers on soil organic carbon (SOC) sequestration in no-tillage (NT) and moldboard plow (MP) corn (Zea mays L.) and soybean (Glycine max L.) production systems. The first trial was conducted on a Maryhill silt loam (Typic Hapludalf) at Elora, Ontario, Canada, the second on a Brookston clay loam (Typic Argiaquoll) at Woodslee, Ontario, Canada, and the third on a Thorp silt loam (Argiaquic Argialboll) at Urbana, Illinois, USA. No-tillage led to significantly higher SOC concentrations in the top 5 cm compared to MP at all 3 sites. However, NT resulted in significantly lower SOC in sub-surface soils as compared to MP at Woodslee (10-20 cm, P = 0.01) and Urbana (20-30 cm, P < 0.10). No-tillage had significantly more SOC storage than MP at the Elora site (3.3 Mg C ha-1) and at the Woodslee site (6.2 Mg C ha-1) on an equivalent mass basis (1350 Mg ha-1 soil equivalent mass). Similarly, NT had greater SOC storage than MP at the Urbana site (2.7 Mg C ha-1) on an equivalent mass basis of 675 Mg ha-1 soil. However, these differences disappeared when the entire plow layer was evaluated for both the Woodslee and Urbana sites as a result of the higher SOC concentrations in MP than in NT at depth. Using the minimum detectable difference technique, we observed that up to 1500 soil sample per tillage treatment comparison will have to be collected and analyzed for the Elora and Woodslee sites and over 40 soil samples per tillage treatment comparison for the Urbana to statistically separate significant differences in the SOC contents of sub-plow depth soils. Therefore, it is impracticable, and at the least prohibitively expensive, to detect tillage-induced differences in soil C beyond the plow layer in various soils. 展开更多
关键词 carbon sequestration minimum detectable difference moldboard plow no-tillage soil depth
下载PDF
Growth and Development Responses of Tobacco (<i>Nicotiana tabacum</i>L.) to Changes in Physical and Hydrological Soil Properties Due to Minimum Tillage
6
作者 Francesca Orlando Marco Napoli +4 位作者 Anna Dalla Marta Francesca Natali Marco Mancini Camillo Zanchi Simone Orlandini 《American Journal of Plant Sciences》 2011年第3期334-344,共11页
Minimum tillage is a soil conservation practice involving a reduction in soil disturbance and topsoil compaction, which could minimize environmental impact of the tobacco cultivation system. The objectives of this stu... Minimum tillage is a soil conservation practice involving a reduction in soil disturbance and topsoil compaction, which could minimize environmental impact of the tobacco cultivation system. The objectives of this study were to evaluate the development and growth responses of Nicotiana tabacum and the changes in the physical and hydrological soil properties after the application of two different treatments: minimum tillage (MT) and conventional tillage (CT). MT did not cause any pronounced differences in the crop yield compared to CT, instead it positively affected the physical and hydrological soil properties and the plants’ vegetative growth. Under MT, the soil showed a higher structural stability than CT with significantly lower compaction values. With MT the soil showed a higher capacity to maintain and store water during the drought periods, evidenced by soil moisture values significantly higher than CT. Tobacco on MT showed a good response, significantly prolonging the vegetative growth stage which at harvest determined a higher stem height, greater number of leaves and longer internodes. 展开更多
关键词 minimum tillage PHENOLOGY Yield SOIL Moisture SOIL Compaction
下载PDF
Short-term Effects of Tillage Practices on Organic Carbon in Clay Loam Soil of Northeast China 被引量:25
7
作者 LIANG Ai-Zhen ZHANG Xiao-Ping +2 位作者 FANG Hua-Jun YANG Xue-Ming C. F. Drury 《Pedosphere》 SCIE CAS CSCD 2007年第5期619-623,共5页
A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage ma... A tillage experiment, consisting of moldboard plow (MP), ridge tillage (RT), and no-tillage (NT), was performed in a randomized complete block design with four replicates to study the effect of 3-year tillage management on SOC content and its distribution in surface layer (30 cm) of a clay loam soil in northeast China. NT did not lead to significant increase of SOC in topsoil (0-5 cm) compared with MP and RT; however, the SOC content in NT soil was remarkably reduced at a depth of 5-20 cm. Accordingly, short-term (3-year) NT management tended to stratify SOC concentration, but not necessarily increase its storage in the plow layer for the soil. 展开更多
关键词 clay loam soil moldboard plow no-tillage ridge tillage soil organic carbon
下载PDF
Genotype×tillage interaction and the performance of winter bread wheat genotypes in temperate and cold dryland conditions
8
作者 Ebrahim ROOHI Reza MOHAMMADI +6 位作者 Abdoul Aziz NIANE Javad VAFABAKHSH Mozaffar ROUSTAEE Mohammad Reza JALAL KAMALI Shahriar SOHRABI Shahriar FATEHI Hossain TARIMORADI 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第11期3199-3215,共17页
Growing concerns for food security and the alleviation of hunger necessitate knowledge-based crop management technologies for sustainable crop production.In this study,13 winter bread wheat genotypes(old,relatively ol... Growing concerns for food security and the alleviation of hunger necessitate knowledge-based crop management technologies for sustainable crop production.In this study,13 winter bread wheat genotypes(old,relatively old,modern,and breeding lines)were evaluated under three different tillage systems,i.e.,conventional tillage(CT,full tillage with residue removed),reduced tillage(RT,chisel tillage with residue retained)and no-tillage(NT,no-tillage with residue retained on the soil surface)in farmer’s fields under rainfed conditions using strip-plot arrangements in a randomized complete block design with three replications in the west of Iran(Kamyaran and Hosseinabad locations)over two cropping seasons(2018–2019 and 2019–2020).The main objectives were to investigate the effects of tillage systems and growing conditions on the agronomic characteristics,grain yield and stability performance of rainfed winter bread wheat genotypes.Significant(P<0.01)genotype×tillage system interaction effects on grain yield and agronomic traits suggested that the genotypes responded differently to the different tillage systems.The number of grains per spike and plant height were positively(P<0.0)associated with grain yield under the NT system,so they may be considered as targeted traits for future wheat breeding.Using statistical models,the modern cultivars(“Sadra”and“Baran”)were identified as high yielding and showed yield stability across the different tillage systems.As per each tillage system,genotype“Sadra”followed by“Zargana-6//Dari 1-7 Sabalan”exhibited higher adaption to CT;while cultivars“Jam”and“Azar2”showed better performance under the RT system;and cultivars“Varan”and“Baran”tended to have better performance expression in the NT condition.The increased grain yields achieved in combination with lower costs and greater profits from conservation agriculture suggest that adapted cultivar and NT systems should be evaluated and promoted more widely to farmers in the west of Iran as an attractive package of crop management technologies.In conclusion,variations in the performance of genotypes and the significant genotype×tillage system interaction effects on grain yield and some agronomic traits assessed in this study suggest that the development and selection of cultivars adapted to the NT system should be considered and included in the strategies and objectives of winter wheat breeding programs for the temperate and cold dryland conditions of Iran. 展开更多
关键词 bread wheat no-tillage reduced tillage grain yield yield stability
下载PDF
Stalk cutting mechanism of no-tillage planter for wide/narrow row farming mode 被引量:5
9
作者 Jia Honglei Jiang Xinming +3 位作者 Yuan Hongfang Zhuang Jian Zhao Jiale Guo Mingzhuo 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第2期26-35,共10页
A no-tillage planter of narrow row spacing was designed according to the agronomic requirements of wide/narrow row farming mode in the black soil region of Northeast China.Due to the narrow spacing of the seeder unit,... A no-tillage planter of narrow row spacing was designed according to the agronomic requirements of wide/narrow row farming mode in the black soil region of Northeast China.Due to the narrow spacing of the seeder unit,a gear-tooth stalk cutting mechanism was designed in order to prevent residues from blocking the planter.The basic parameters,number and edge curve of the stalk cutting blade were designed and optimized.Three-factor and three-level combined orthogonal experiments were conducted using the factors of working speed(1.12 m/s,1.57 m/s and 2.02 m/s),tillage depth(75 mm,90 mm and 105 mm)and cutter spacing(15 mm,30 mm and 45 mm),which significantly affected stalk cutting rate and soil disturbance rate.The optimal combination is the working speed of 1.62 m/s,tillage depth of 92 mm and cutter spacing of 35 mm.Under this condition,the stalk cutting rate is more than 90%and soil disturbance rate is 7.5%-12.0%.The performance of the new no-tillage planter was tested by using the above parameters.The results showed that the no-tillage planter of narrow row spacing came up to the relevant national standards in China. 展开更多
关键词 conservation tillage no-tillage planter wide/narrow row farming stalk cutting mechanism soil disturbance rate direct sowing corn Northeast China
原文传递
Responses of greenhouse gas fluxes to experimental warming in wheat season under conventional tillage and no-tillage fields 被引量:7
10
作者 Chun Tu Fadong Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2017年第4期314-327,共14页
Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming eff... Understanding the effects of warming on greenhouse gas(GHG, such as N2O, CH4 and CO2 )feedbacks to climate change represents the major environmental issue. However, little information is available on how warming effects on GHG fluxes in farmland of North China Plain(NCP). An infrared warming simulation experiment was used to assess the responses of N2O, CH4 and CO2 to warming in wheat season of 2012–2014 from conventional tillage(CT) and no-tillage(NT) systems. The results showed that warming increased cumulative N2O emission by 7.7% in CT but decreased it by 9.7% in NT fields(p 〈 0.05). Cumulative CH4 uptake and CO2 emission were increased by 28.7%–51.7% and 6.3%–15.9% in both two tillage systems,respectively(p 〈 0.05). The stepwise regressions relationship between GHG fluxes and soil temperature and soil moisture indicated that the supply soil moisture due to irrigation and precipitation would enhance the positive warming effects on GHG fluxes in two wheat seasons.However, in 2013, the long-term drought stress due to infrared warming and less precipitation decreased N2O and CO2 emission in warmed treatments. In contrast, warming during this time increased CH4 emission from deep soil depth. Across two years wheat seasons, warming significantly decreased by 30.3% and 63.9% sustained-flux global warming potential(SGWP) of N2O and CH4 expressed as CO2 equivalent in CT and NT fields, respectively. However, increase in soil CO2 emission indicated that future warming projection might provide positive feedback between soil C release and global warming in NCP. 展开更多
关键词 Climate warming Greenhouse gas fluxes(N2O CH4 CO2) Conventional tillage no-tillage Soil temperature Soil moisture
原文传递
Optimization and experiment on key structural parameters of no-tillage planter with straw-smashing and strip-mulching 被引量:1
11
作者 Yinyan Shi Xiaochan Wang +3 位作者 Zhichao Hu Fengwei Gu Feng Wu Youqing Chen 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2021年第3期103-111,共9页
Accelerate the quality of smashed-straw laying and enhance the effect of seed-bed arranging for no-tillage planter with straw-smashing and strip-mulching in full stubble covered paddy have become imperative in impleme... Accelerate the quality of smashed-straw laying and enhance the effect of seed-bed arranging for no-tillage planter with straw-smashing and strip-mulching in full stubble covered paddy have become imperative in implementing modern conservation tillage.Considering the perfect operating performance(passability and stability)of the developed no-tillageplanter,this study intends to optimize the structure design of smashed-straw diversion device and strip-rotary tillage device.Dynamics equations of smashed straw and kinematics models of rotary blades were established through theoretical analysis,and the principal factors that affecting straw strip-laying quality and seed-bed arranging effect were specified.The influence of out-enlarge angle(η)and slide-push angle(γ)of the diversion device on the coefficient of variation(ζ1)of cover-straw width,and the influence of rotary tillage-blade number(N)and configuration in a singlerotary plane on the broken rate(ζ2)of strip soil were completely analyzed.And then,based on the systematic analysis and integrated scheme,operating performance and field verification tests using the optimized no-tillage planter were thoroughly performed.The results of the performance tests indicated that the out-enlarge angle(η)had a highly significant influence on the coefficient of variation(ζ1),and the slide-push angle(γ)had a significant influence on(ζ1).The rotary tillage-blade number(N)had a highly significant influence on the broken rate(ζ2),and the slide-push angle(γ)had a significant influence on(ζ2).The obtained optimal combination of these key structure parameters through comprehensive analysis wasη=45°,γ=40°,and N=4.Field verification test results indicated that the optimized no-tillage planter achieved mean values of ζ1=10.47%and ζ2=90.95%,which satisfied the relevant operation quality and cultivation agricultural requirement of conservation tillage equipment,and provided technical references for developing the similar no-tillage planter of straw crushing and returning. 展开更多
关键词 no-tillage planter smashed-straw laying strip rotary tillage optimization test
原文传递
保护性耕作技术与机具研究进展 被引量:151
12
作者 何进 李洪文 +2 位作者 陈海涛 卢彩云 王庆杰 《农业机械学报》 EI CAS CSCD 北大核心 2018年第4期1-19,共19页
保护性耕作技术主要包括免少耕播种、秸秆残茬管理及表土耕作技术等。在回顾分析国内外保护性耕作技术应用概况、技术模式和效应的基础上,重点阐述了秸秆残茬管理、表土耕作技术与机具、免少耕播种关键技术的工作原理、技术特点及发展... 保护性耕作技术主要包括免少耕播种、秸秆残茬管理及表土耕作技术等。在回顾分析国内外保护性耕作技术应用概况、技术模式和效应的基础上,重点阐述了秸秆残茬管理、表土耕作技术与机具、免少耕播种关键技术的工作原理、技术特点及发展动态。结合国内保护性耕作研究进展与应用需求,在分析归纳现阶段保护性耕作技术难点的基础上,从改进机具关键作业部件加工工艺与材料、加强基础理论研究与机具结构优化、提升机具智能化测控与信息化管理、实现农机与农艺结合和形成因地适宜保护性耕作技术体系等方面展望了未来研究方向。 展开更多
关键词 保护性耕作 免少耕播种 秸秆残茬管理 表土耕作
下载PDF
少免耕对灌溉农田冬小麦/夏玉米作物水、肥利用的影响 被引量:148
13
作者 江晓东 李增嘉 +3 位作者 侯连涛 王芸 王雪 颜红 《农业工程学报》 EI CAS CSCD 北大核心 2005年第7期20-24,共5页
土壤耕作可影响土壤硝态氮的淋失、土壤的贮水量和作物的水分利用效率。为了研究少免耕在冬小麦套作夏玉米一年两熟灌溉农田对作物产量、水分利用效率和土壤硝态氮含量的影响,采用了5种土壤耕作体系(常规耕作无秸秆还田、常规耕作秸秆... 土壤耕作可影响土壤硝态氮的淋失、土壤的贮水量和作物的水分利用效率。为了研究少免耕在冬小麦套作夏玉米一年两熟灌溉农田对作物产量、水分利用效率和土壤硝态氮含量的影响,采用了5种土壤耕作体系(常规耕作无秸秆还田、常规耕作秸秆还田、旋耕秸秆还田、缺口圆盘耙耕秸秆还田、免耕秸秆覆盖)在山东龙口进行了田间试验。利用烘干法测定了土壤含水率,利用连续流动分析仪测定了土壤硝态氮的含量。结果表明:相对于常规耕作,少耕特别是旋耕还田方式能够增加土壤贮水量、提高作物水分利用效率和全年作物产量,提高土壤0~60cm层次硝态氮含量、减少硝态氮的淋失。以旋耕还田为主的耕作体系可以在该地区应用,而免耕覆盖则不适宜。 展开更多
关键词 少免耕 灌溉 作物产量 水分利用效率 土壤硝态氮
下载PDF
少免耕模式对冬小麦花后旗叶衰老和产量的影响 被引量:32
14
作者 江晓东 迟淑筠 +3 位作者 李增嘉 宁堂原 王芸 邵国庆 《农业工程学报》 EI CAS CSCD 北大核心 2008年第4期55-58,共4页
小麦开花后旗叶的生理活性对产量存在显著影响。为了研究少免耕耕作体系对冬小麦旗叶衰老状况的影响,采用4种土壤耕作模式(常规耕作秸秆还田、旋耕秸秆还田、耙耕秸秆还田、免耕秸秆覆盖)在山东龙口进行了3年田间试验,研究了耕作模式对... 小麦开花后旗叶的生理活性对产量存在显著影响。为了研究少免耕耕作体系对冬小麦旗叶衰老状况的影响,采用4种土壤耕作模式(常规耕作秸秆还田、旋耕秸秆还田、耙耕秸秆还田、免耕秸秆覆盖)在山东龙口进行了3年田间试验,研究了耕作模式对小麦产量及花后不同时期旗叶超氧化物歧化酶(SOD)和过氧化物酶(POD)活性、丙二醛(MDA)和可溶性蛋白含量的影响。结果表明:与常规耕作秸秆还田模式相比,旋耕秸秆还田和耙耕秸秆还田模式旗叶衰老过程中活性氧清除系统的自动调节能力较强,SOD、POD活性变化幅度较常规耕作模式平稳;免耕覆盖模式小麦旗叶在蜡熟期MDA含量显著低于其他模式,而可溶性蛋白含量显著高于其他模式,表现出明显的贪青晚熟的特点。旋耕秸秆还田和耙耕秸秆还田模式产量与常规耕作秸秆还田差异不显著,免耕秸秆覆盖模式产量显著低于其他耕作模式。研究表明短期(1~3年)少耕耕作模式可以在该地区应用,而免耕覆盖则不适宜。 展开更多
关键词 少免耕 冬小麦 旗叶 衰老 产量
下载PDF
东北黑土地玉米免少耕播种技术与机具研究进展 被引量:28
15
作者 王庆杰 曹鑫鹏 +3 位作者 王超 李洪文 何进 卢彩云 《农业机械学报》 EI CAS CSCD 北大核心 2021年第10期1-15,共15页
以秸秆覆盖还田和玉米免少耕播种为主要技术特征的保护性耕作技术是东北黑土地保护与利用的主要技术手段。本文综述了东北黑土区目前主要的玉米免少耕播种技术模式与配套机具,重点对比分析了秸秆覆盖还田条件下种床整备机具工作原理及... 以秸秆覆盖还田和玉米免少耕播种为主要技术特征的保护性耕作技术是东北黑土地保护与利用的主要技术手段。本文综述了东北黑土区目前主要的玉米免少耕播种技术模式与配套机具,重点对比分析了秸秆覆盖还田条件下种床整备机具工作原理及其技术特点。在阐述现有玉米免少耕播种技术模式及配套装备存在主要问题的基础上,建议重点围绕种床整备、高速精量排种、智能电驱排种、播深智能控制、垄作免少耕播种、农机农艺融合等方面展开深入研究,以期为东北黑土地玉米免少耕播种技术与机具研究提供装备技术支撑。 展开更多
关键词 黑土地 保护性耕作 免少耕播种 种床整备 玉米
下载PDF
少免耕模式对冬小麦生长发育及产量性状的影响 被引量:42
16
作者 董文旭 陈素英 +1 位作者 胡春胜 尹春梅 《华北农学报》 CSCD 北大核心 2007年第2期141-144,共4页
通过田间试验研究了华北平原山前平原区不同耕作方式下,冬小麦的生长发育进程的变化及对产量的影响。根据冬小麦播种前的土壤耕作方式的不同,设深耕处理、少耕处理和免耕处理3类、6个处理。研究结果表明:耕作方式明显影响小麦的出苗... 通过田间试验研究了华北平原山前平原区不同耕作方式下,冬小麦的生长发育进程的变化及对产量的影响。根据冬小麦播种前的土壤耕作方式的不同,设深耕处理、少耕处理和免耕处理3类、6个处理。研究结果表明:耕作方式明显影响小麦的出苗率,传统翻耕处理出苗率比免耕高出27.1%~46.2%。由于秸秆的覆盖,免耕处理小麦返青期低温偏低,导致生育期推迟7~10d,后期作物生长受到明显影响,是造成免耕处理减产的重要原因之一。另外,由于免耕处理蒸发较小和小麦根系不发达,NO3^--N淋失到土壤剖面的100cm以下,不仅使氮肥利用率低,也是造成免耕减产原因之一。 展开更多
关键词 少耕 免耕 冬小麦 产量 秸秆还田
下载PDF
少免耕与秸秆还田对极端土壤水分及冬小麦产量的影响 被引量:86
17
作者 吕美蓉 李增嘉 +3 位作者 张涛 宁堂原 赵建波 李洪杰 《农业工程学报》 EI CAS CSCD 北大核心 2010年第1期41-46,共6页
为了高效利用天然降雨,缓和农业水资源短缺,该试验在小麦、玉米一年两熟条件下,设置耕作措施和秸秆2个因素,其中耕作措施分为常规耕作、深松耕、耙耕、旋耕、免耕5种,秸秆因素分为玉米秸秆全量还田与不还田,共10个处理,研究了耕作措施... 为了高效利用天然降雨,缓和农业水资源短缺,该试验在小麦、玉米一年两熟条件下,设置耕作措施和秸秆2个因素,其中耕作措施分为常规耕作、深松耕、耙耕、旋耕、免耕5种,秸秆因素分为玉米秸秆全量还田与不还田,共10个处理,研究了耕作措施与秸秆因素对极端土壤水分和冬小麦产量的效应。结果表明,无论秸秆还田与否,相对于常规耕作,深松耕能提高土壤水分充足期的土壤含水率,增加冬小麦产量,尤其是深松耕秸秆还田,比常规耕作无秸秆还田分别高25.74%和11.45%。秸秆因素在土壤水分充足时影响土壤含水率方面占主导地位,秸秆因素与耕作措施在土壤水分亏缺时影响土壤含水率和冬小麦产量方面均起着重要的作用。免耕、深松耕、耙耕与秸秆还田的交互效应能够增加集雨,提高冬小麦产量。研究结果还表明,冬小麦产量与土壤水分亏缺时土壤含水率相关不显著,而与土壤水分充足期土壤含水率相关显著。 展开更多
关键词 秸秆 土壤含水率 耕作 少免耕 还田 极端土壤水分 产量
下载PDF
少免耕栽培晚稻对土壤微生物区系及活度的动态影响 被引量:16
18
作者 李倩 谭周进 +2 位作者 李建国 屠乃美 肖启明 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第4期415-417,共3页
为探明农业技术措施对土壤生物学特征的影响,以制定合理的耕作制度,保障土壤的可持续利用,进行了1/3稻草覆盖少免耕对晚稻土壤微生物区系及活度的动态影响研究.结果表明,土壤中几类微生物的数量在晚稻不同生育期都表现为先升后降的趋势... 为探明农业技术措施对土壤生物学特征的影响,以制定合理的耕作制度,保障土壤的可持续利用,进行了1/3稻草覆盖少免耕对晚稻土壤微生物区系及活度的动态影响研究.结果表明,土壤中几类微生物的数量在晚稻不同生育期都表现为先升后降的趋势,并且在晚稻分蘖盛期最高.好气性细菌、放线菌、真菌及微生物活度从高到低为少耕土壤、翻耕土壤、免耕土壤,而厌气性细菌数量从高到低为翻耕土壤、少耕土壤、免耕土壤.通过对土壤微生物分析评价发现,在提高土壤质量和利于作物生长方面,少量秸秆还田少耕要优于少量秸秆还田翻耕和免耕. 展开更多
关键词 少免耕 水稻土 微生物区系 微生物活度
下载PDF
长期少耕对玉米产量与土壤生态环境的影响(1983~2002) 被引量:19
19
作者 何奇镜 佟培生 +1 位作者 边少锋 张丽华 《玉米科学》 CAS CSCD 2004年第z1期99-102,104,共5页
在玉米连作基础上连续少耕20年,玉米平均产量9015.7kg/hm2,比连耕20年增产4%;在干旱灾年平均产量6933.5kg/hm2,比连耕增产6.7%,具有较强的抗旱力。土壤紧实度(容重)保持在1.263~1.353g/cm3的最佳状态,土壤绝对含水量高于连耕10.66~13.... 在玉米连作基础上连续少耕20年,玉米平均产量9015.7kg/hm2,比连耕20年增产4%;在干旱灾年平均产量6933.5kg/hm2,比连耕增产6.7%,具有较强的抗旱力。土壤紧实度(容重)保持在1.263~1.353g/cm3的最佳状态,土壤绝对含水量高于连耕10.66~13.7kg/m3,土壤pH6.1(呈中性反应)大于连耕pH5.7(呈微酸性反应),缓冲作用强于连耕。土壤全P和速效N、P、K高于连耕,保肥能力强于连耕,经济效益突出。 展开更多
关键词 少耕 玉米 土壤 经济效益
下载PDF
耕作措施对华北夏玉米田土壤温度和酶活性的影响 被引量:19
20
作者 王福军 张明园 +1 位作者 张海林 陈阜 《生态环境学报》 CSCD 北大核心 2012年第5期848-852,共5页
为探讨长期耕作措施下华北平原夏玉米生长季土壤温度与酶活性的变化规律,本研究对四种耕作处理(免耕秸秆还田NTS,旋耕秸秆还田RTS,翻耕秸秆还田CTS和翻耕秸秆不还田CT)下土壤层次的温度和酶活性进行了测定和分析。结果表明:同一土壤层... 为探讨长期耕作措施下华北平原夏玉米生长季土壤温度与酶活性的变化规律,本研究对四种耕作处理(免耕秸秆还田NTS,旋耕秸秆还田RTS,翻耕秸秆还田CTS和翻耕秸秆不还田CT)下土壤层次的温度和酶活性进行了测定和分析。结果表明:同一土壤层次的各耕作处理均从6:00-18:00呈现正弦波的变化特征;免耕、旋耕等保护性耕作处理在玉米的生育期内温度变化平稳,日均差均小于翻耕秸秆还田和翻耕秸秆不还田;免耕秸秆还田处理土壤酶活性最高,脲酶活性在夏玉米的3个生育期(播种期、大喇叭口期和收获期)分别高于翻耕秸秆不还田处理28.98%,35.62%和24.9%,碱性磷酸酶分别高32.7%,11.94%和10.39%,脱氢酶分别高27.53%,20.39%和30.53%,旋耕和翻耕秸秆还田处理3种酶的活性也明显高于翻耕秸秆不还田处理;旋耕与翻耕秸秆还田处理脲酶和碱性磷酸酶的差异不显著,脱氢酶的差异达到了5%的差异显著水平;通过研究表明在华北平原采用少免耕为主的保护性耕作措施,可以提高土壤酶活性,降低成本,提高经济效益。 展开更多
关键词 耕作措施 少免耕 土壤温度 脲酶 碱性磷酸酶 脱氢酶
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部