The purpose of this study was to assess the extent of cadmium (Cd) contamination in agricultural soil and its potential risk for people. Soils, rice, and vegetables from Chenzhou City, Southern China were sampled an...The purpose of this study was to assess the extent of cadmium (Cd) contamination in agricultural soil and its potential risk for people. Soils, rice, and vegetables from Chenzhou City, Southern China were sampled and analyzed. In the surface soils, the 95% confidence interval for the mean concentration of Cd varied between 2.72 and 4.83 mg/kg (P 〈 0.05) in the survey, with a geometric mean concentration of 1.45 mg/kg. Based on the GIS map, two hot spot areas of Cd in agricultural soils with high Cd concentrations were identified to be located around the Shizhuyuan, Jinshiling, and Yaogangxian mines, and the Baoshan and Huangshaping mines, in the center of the city. About 60% of the total investigated area, where the agricultural soil Cd concentration is above 1 mg/kg, is distributed in a central belt across the region. The critical distances, at which the soil Cd concentration were increased by the mining activities, from the mines of the soils were 23 km for the Baoshan mine, 46 km for the Huangshaping mine, and 63 km for the Shizhuyuan mine, respectively. These are distances calculated from models. The Cd concentrations in rice samples ranged from 0.01 to 4.43 mg/kg and the mean dietary Cd intake from rice for an adult was 191 μg/d. Results of risk indexes showed that soil Cd concentrations possessed risks to local residents whose intake of Cd from rice and vegetables grown in soils in the vicinity of the mine was 596 μg/d.展开更多
Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected...Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected elements (Ti, V, Mo. Ni. Pb. Cu) show similar distribution patterns of concentration anomaly in topsoil. These concentration anomalies are located in V-Ti-magnetite slope, gangues dam and coal mine. The distinction between anthropogenic contamination and natural background is made available by the use of the enrichment factor in this study area. The anomalies of EF were smaller than that of concentration. The results from EF show that the selected elements anthropogenic pollution (EF>1) in topsoil were located in both the coal mining area and the V-Ti-magnetite mining area. In addition, the pollution sources of selected elements came from V-Ti-magnetite, slag, gangues, coal and other pollutants from mining activities.展开更多
Mining activities have left huge uncovered slopes, large areas of gangue ground and extensive railings dams. In this paper, we studied some impacts of mining activities upon environment in Panzhihua region, southweste...Mining activities have left huge uncovered slopes, large areas of gangue ground and extensive railings dams. In this paper, we studied some impacts of mining activities upon environment in Panzhihua region, southwestern China. The environmental impacts include ecological destruction, geological disasters, environmental pollution, land damage, solid waste and occupational health effect in study area. The author suggested that local government should take some measure to reduce environmental impact in Pan...展开更多
Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in...Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.展开更多
Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the stu...Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.展开更多
<p> The concentrations and distribution of naturally occurring radionuclides <span><span><span><span>(</span><sup><span>238</span></sup><span>U, </s...<p> The concentrations and distribution of naturally occurring radionuclides <span><span><span><span>(</span><sup><span>238</span></sup><span>U, </span><sup><span>235</span></sup><span>U, </span><sup><span>234</span></sup><span>U, </span><sup><span>230</span></sup><span>Th, </span><sup><span>226</span></sup><span>Ra, </span><sup><span>210</span></sup><span>Pb, </span><sup><span>232</span></sup><span>Th, </span><sup><span>228</span></sup><span>Ra, and </span><sup><span>40</span></sup><span>K)</span></span></span></span><span><span><span><span> were determined by alpha and gamma spectrometry in soil and sediments collected from Luilu and Dilala rivers located in the mining district of Kolwezi (Lualaba Province) of the Democratic Republic of the Congo. The average concentrations of </span><sup><span>238</span></sup><span>U and </span><sup><span>226</span></sup><span>Ra in the analyzed samples were 5</span></span></span></span><span><span><span> </span></span></span><span><span><span>-</span></span></span><span><span><span> </span></span></span><span><span><span>10 times higher than the world average values for soil provided by the </span></span></span><span><span><span>United Nations Scientific Committee on the Effects of Atomic Radiation. However,</span></span></span><span><span><span><span> the average concentrations of </span><sup><span>232</span></sup><span>Th were found similar to the world average. In both river basins, artisanal mining activities and</span></span></span></span><span><span><span> mineral washing sites displayed the higher concentration values of radionuclides. The mean values of health risk indices calculated for those sites were found sig</span></span></span><span><span><span>nificantly higher compared to world average levels. Radiation protection measures seem needed to ensure the radiation safety of local populations.</span></span></span> </p> <p> <span><span><span><br /> </span></span></span> </p> <p> <span style="font-size:16px;"><strong>Graphical Abstract</strong></span> </p> <p> <span><span><span><img src="Edit_7a1bf87c-f0a0-4c34-80b2-7e488ac5e4a2.png" alt="" /><br /> </span></span></span> </p>展开更多
It is known that the exploitation of opencast coal mines has seriously damaged the environments in the semi-arid areas.Vegetation status can reliably reflect the ecological degeneration and restoration in the opencast...It is known that the exploitation of opencast coal mines has seriously damaged the environments in the semi-arid areas.Vegetation status can reliably reflect the ecological degeneration and restoration in the opencast mining areas in the semi-arid areas.Long-time series MODIS NDVI data are widely used to simulate the vegetation cover to reflect the disturbance and restoration of local ecosystems.In this study, both qualitative(linear regression method and coefficient of variation(CoV)) and quantitative(spatial buffer analysis, and change amplitude and the rate of change in the average NDVI) analyses were conducted to analyze the spatio-temporal dynamics of vegetation during 2000–2017 in Jungar Banner of Inner Mongolia Autonomous Region, China, at the large(Jungar Banner and three mine groups) and small(three types of functional areas: opencast coal mining excavation areas, reclamation areas and natural areas) scales.The results show that the rates of change in the average NDVI in the reclamation areas(20%–60%) and opencast coal mining excavation areas(10%–20%) were considerably higher than that in the natural areas(<7%).The vegetation in the reclamation areas experienced a trend of increase(3–5 a after reclamation)-decrease(the sixth year of reclamation)-stability.The vegetation in Jungar Banner has a spatial heterogeneity under the influences of mining and reclamation activities.The ratio of vegetation improvement area to vegetation degradation area in the west, southwest and east mine groups during 2000–2017 was 8:1, 20:1 and 33:1, respectively.The regions with the high CoV of NDVI above 0.45 were mainly distributed around the opencast coal mining excavation areas, and the regions with the CoV of NDVI above 0.25 were mostly located in areas with low(28.8%) and medium-low(10.2%) vegetation cover.The average disturbance distances of mining activities on vegetation in the three mine groups(west, southwest and east) were 800, 800 and 1000 m, respectively.The greater the scale of mining, the farther the disturbance distances of mining activities on vegetation.We conclude that vegetation reclamation will certainly compensate for the negative impacts of opencast coal mining activities on vegetation.Sufficient attention should be paid to the proportional allocation of plant species(herbs and shrubs) in the reclamation areas, and the restored vegetation in these areas needs to be protected for more than 6 a.Then, as the repair time increased, the vegetation condition of the reclamation areas would exceed that of the natural areas.展开更多
During the 17th Century, Parral City in the Chihuahua State in Mexico was one of the most important miner zones in the whole world. After more than three centuries important amounts of residuals, known as tailings, wi...During the 17th Century, Parral City in the Chihuahua State in Mexico was one of the most important miner zones in the whole world. After more than three centuries important amounts of residuals, known as tailings, with high contents of heavy metals were generated. These residuals are a potential risk for the environment and human health. Given to that, it decided to carry out the analysis of the concentrations of cadmium, lead, chromium, zinc and arsenics, in topsoil samples susceptible of airborne transport and accumulation in risky zones (populated areas). A 120 kin: area was selected, this include Parral City and its surroundings. From this area 30 samples were obtained. For this purpose, Atomic Absorption Spectroscopy technique was used, expecting high concentrations of heavy metals, above the permit limits, since several studies carried out in the same region, as in San Francisco del Oro Chihuahua, show that the concentrations of all the elements sampled, in topsoil, were above the limits. The analysis in the space distribution of the heavy metal detected will allow us to set the points with the highest susceptibility to the accumulation of those pollutants and to propose mitigation measures and control.展开更多
A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In th...A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.展开更多
The Mexican oregano "Lippia berlandieri Shauer" is a versatile plant, for multiple purposes and high potential adaptative capabilities. To evaluate the possibility to use oregano as a cover surface on tailings depos...The Mexican oregano "Lippia berlandieri Shauer" is a versatile plant, for multiple purposes and high potential adaptative capabilities. To evaluate the possibility to use oregano as a cover surface on tailings deposits and thereby mitigate the emission of particulate material with metals content, an experiment was carried out comparing the plant growing rate over a period of six-month in four substrates: tailings, vermicompost, "soil" of the region and a mixture of "tailings plus vermicompost". The statistical analysis shows a significant difference between treatments, resulting in the "soil" substrate with the best performance, followed by the mixture of"tailings plus vermicompost" treatment. The low permeability oftailings strongly affects the adaptability and growth of the oregano plant; however, the adaptation possibilities increase in the mixture oftailings with vermicompost or "soil" of the region.展开更多
Levels of seven metals (Mn, Cu, Zn, Pb, Cr, Cd, and Se) in the scalp hair of Daicun and Xiangtian inhabitants were determined by ICP-MS/AFS. Daicun, as an experimental site, is near Dexing Copper Mine, Jiangxi Provi...Levels of seven metals (Mn, Cu, Zn, Pb, Cr, Cd, and Se) in the scalp hair of Daicun and Xiangtian inhabitants were determined by ICP-MS/AFS. Daicun, as an experimental site, is near Dexing Copper Mine, Jiangxi Province, China, and exposed to mining pollution; Xiangtian, as a control site, is free from any mining and other industrial pollution. The heavy metal distribution in the scalp hair of the two diverse population segments exposed to different environments was discussed against the background of the heavy metal content of local plants, waters, and soils. The results show: 1) Levels ofCu, Zn, Pb, Cr, and Cd in the scalp hair of Daicun inhabitants were higher compared with Xiangtian counterparts which showed higher comparative levels of Se and Mn. But there were no significant differences of the levels of Cu and Zn in the hair samples between the two villages. In the hair of the inhabitants in the two villages, the levels for Se, Zn, and Cu were lower, while the level for Mn was higher, than the corresponding levels from other regions of the world. Compared with the standard issued by the Trace Element Research Council of China for Chinese inhabitants there were serious Se, Zn, Cu and Cr-deficiency phenomena in the hair samples from Daicun and Xiangtian. 2) Against the geological background of high levels ofZn, Cu, Se and Cr, there were deficiencies of Zn, Cu, Se and Cr in the hair samples of the Daictm population. This may have been caused by the distribution forms of the heavy metals in the soils, and antagonism among the elements. 3) Principal Component Analysis (PCA) and Cluster Analysis (CA) indicated that the origins of the heavy metals in the hair samples from the two villages had some differences as well as some similarities, this should be contributed mainly to the influence of the mining activities.展开更多
文摘The purpose of this study was to assess the extent of cadmium (Cd) contamination in agricultural soil and its potential risk for people. Soils, rice, and vegetables from Chenzhou City, Southern China were sampled and analyzed. In the surface soils, the 95% confidence interval for the mean concentration of Cd varied between 2.72 and 4.83 mg/kg (P 〈 0.05) in the survey, with a geometric mean concentration of 1.45 mg/kg. Based on the GIS map, two hot spot areas of Cd in agricultural soils with high Cd concentrations were identified to be located around the Shizhuyuan, Jinshiling, and Yaogangxian mines, and the Baoshan and Huangshaping mines, in the center of the city. About 60% of the total investigated area, where the agricultural soil Cd concentration is above 1 mg/kg, is distributed in a central belt across the region. The critical distances, at which the soil Cd concentration were increased by the mining activities, from the mines of the soils were 23 km for the Baoshan mine, 46 km for the Huangshaping mine, and 63 km for the Shizhuyuan mine, respectively. These are distances calculated from models. The Cd concentrations in rice samples ranged from 0.01 to 4.43 mg/kg and the mean dietary Cd intake from rice for an adult was 191 μg/d. Results of risk indexes showed that soil Cd concentrations possessed risks to local residents whose intake of Cd from rice and vegetables grown in soils in the vicinity of the mine was 596 μg/d.
基金This paper is supported by Youth Scientific Technological Fund of Sichuan Province.
文摘Mining activities have created huge uncovered slopes, large areas of gangue ground and extensive tailings dams. This paper presents the environmental geochemistry of mining activities in Panzhihua region. The selected elements (Ti, V, Mo. Ni. Pb. Cu) show similar distribution patterns of concentration anomaly in topsoil. These concentration anomalies are located in V-Ti-magnetite slope, gangues dam and coal mine. The distinction between anthropogenic contamination and natural background is made available by the use of the enrichment factor in this study area. The anomalies of EF were smaller than that of concentration. The results from EF show that the selected elements anthropogenic pollution (EF>1) in topsoil were located in both the coal mining area and the V-Ti-magnetite mining area. In addition, the pollution sources of selected elements came from V-Ti-magnetite, slag, gangues, coal and other pollutants from mining activities.
基金This study is granted by China Postdoctoral Science Foundation "environmental geochemical principles and techniques for assessing disturbed soil by mining activity" and China Land and Resources Ministry Special Project (No.30302408)"regional geochemical
文摘Mining activities have left huge uncovered slopes, large areas of gangue ground and extensive railings dams. In this paper, we studied some impacts of mining activities upon environment in Panzhihua region, southwestern China. The environmental impacts include ecological destruction, geological disasters, environmental pollution, land damage, solid waste and occupational health effect in study area. The author suggested that local government should take some measure to reduce environmental impact in Pan...
基金Project(1212010741003)supported by the Ministry of Land and Resources of ChinaProject(SJ08-ZT08)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(NCET-07-0694)supported by Program for University Talents in the NewCentury,China
文摘Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.
基金jointly funded by National Natural Science Foundation of China (41877398)project of the China Geological Survey (DD20221773)。
文摘Heavy metal distribution in mining areas has always been a hot research topic due to the special environment of these areas. This study aims to explore the impact of heavy metal pollution on soils and crops in the study area, ensure the safety of local crops and the health of local residents, and provide a basis for the subsequent environmental restoration and the prevention and control of environmental pollution. Based on the analysis of the heavy metal concentrations in local soils and crops, the study investigated the spatial distribution, pollution degrees, and potential ecological risks of heavy metals in the farmland of a mining area in the southeastern Nanyang Basin, Henan province, China explored the sources of heavy metals and assessed the health risks caused by crop intake. The results of this study are as follows. The root soils of crops in the study area suffered heavy metal pollution to varying degrees. The degree of heavy metal pollution in maize fields is higher than that in wheat fields, and both types of fields suffer the most severe Cd pollution. Moreover, the root soils of different crops suffer compound pollution.The root soils in the maize fields suffer severe compound pollution at some sampling positions, whose distribution is similar to that of the mining area. Cd poses the highest potential ecological risks among all heavy metals, and the study area mainly suffers low and moderate comprehensive potential ecological risks. The principal component analysis(PCA) shows that the distribution of Zn, Cd, Pb, and As in soils of the study area is mainly affected by anthropogenic factors such as local mining activities;the distribution of Cr and Ni is primarily controlled by the local geological background;the distribution of Hg is mainly affected by local vehicle exhaust emissions, and the distribution of Cu is influenced by both human activities and the geological background. Different cereal crops in the study area are polluted with heavy metals dominated by Cd and Ni to varying degrees, especially wheat. As indicated by the health risk assessment results, the intake of maize in the study area does not pose significant human health risks;however, Cu has high risks to human health, and the compound heavy metal pollution caused by the intake of wheat in the study area poses risks to the health of both adults and children. Overall, the soils and crops in the study area suffer a high degree of heavy metal pollution, for which mining activities may be the main reason.
文摘<p> The concentrations and distribution of naturally occurring radionuclides <span><span><span><span>(</span><sup><span>238</span></sup><span>U, </span><sup><span>235</span></sup><span>U, </span><sup><span>234</span></sup><span>U, </span><sup><span>230</span></sup><span>Th, </span><sup><span>226</span></sup><span>Ra, </span><sup><span>210</span></sup><span>Pb, </span><sup><span>232</span></sup><span>Th, </span><sup><span>228</span></sup><span>Ra, and </span><sup><span>40</span></sup><span>K)</span></span></span></span><span><span><span><span> were determined by alpha and gamma spectrometry in soil and sediments collected from Luilu and Dilala rivers located in the mining district of Kolwezi (Lualaba Province) of the Democratic Republic of the Congo. The average concentrations of </span><sup><span>238</span></sup><span>U and </span><sup><span>226</span></sup><span>Ra in the analyzed samples were 5</span></span></span></span><span><span><span> </span></span></span><span><span><span>-</span></span></span><span><span><span> </span></span></span><span><span><span>10 times higher than the world average values for soil provided by the </span></span></span><span><span><span>United Nations Scientific Committee on the Effects of Atomic Radiation. However,</span></span></span><span><span><span><span> the average concentrations of </span><sup><span>232</span></sup><span>Th were found similar to the world average. In both river basins, artisanal mining activities and</span></span></span></span><span><span><span> mineral washing sites displayed the higher concentration values of radionuclides. The mean values of health risk indices calculated for those sites were found sig</span></span></span><span><span><span>nificantly higher compared to world average levels. Radiation protection measures seem needed to ensure the radiation safety of local populations.</span></span></span> </p> <p> <span><span><span><br /> </span></span></span> </p> <p> <span style="font-size:16px;"><strong>Graphical Abstract</strong></span> </p> <p> <span><span><span><img src="Edit_7a1bf87c-f0a0-4c34-80b2-7e488ac5e4a2.png" alt="" /><br /> </span></span></span> </p>
基金supported by the National Key Research and Development Program of China (2016YFC0501107)the Project of Ordos Science and Technology Program (2017006)the Special Project of Science and Technology Basic Work of Ministry of Science and Technology of China (2014FY110800)
文摘It is known that the exploitation of opencast coal mines has seriously damaged the environments in the semi-arid areas.Vegetation status can reliably reflect the ecological degeneration and restoration in the opencast mining areas in the semi-arid areas.Long-time series MODIS NDVI data are widely used to simulate the vegetation cover to reflect the disturbance and restoration of local ecosystems.In this study, both qualitative(linear regression method and coefficient of variation(CoV)) and quantitative(spatial buffer analysis, and change amplitude and the rate of change in the average NDVI) analyses were conducted to analyze the spatio-temporal dynamics of vegetation during 2000–2017 in Jungar Banner of Inner Mongolia Autonomous Region, China, at the large(Jungar Banner and three mine groups) and small(three types of functional areas: opencast coal mining excavation areas, reclamation areas and natural areas) scales.The results show that the rates of change in the average NDVI in the reclamation areas(20%–60%) and opencast coal mining excavation areas(10%–20%) were considerably higher than that in the natural areas(<7%).The vegetation in the reclamation areas experienced a trend of increase(3–5 a after reclamation)-decrease(the sixth year of reclamation)-stability.The vegetation in Jungar Banner has a spatial heterogeneity under the influences of mining and reclamation activities.The ratio of vegetation improvement area to vegetation degradation area in the west, southwest and east mine groups during 2000–2017 was 8:1, 20:1 and 33:1, respectively.The regions with the high CoV of NDVI above 0.45 were mainly distributed around the opencast coal mining excavation areas, and the regions with the CoV of NDVI above 0.25 were mostly located in areas with low(28.8%) and medium-low(10.2%) vegetation cover.The average disturbance distances of mining activities on vegetation in the three mine groups(west, southwest and east) were 800, 800 and 1000 m, respectively.The greater the scale of mining, the farther the disturbance distances of mining activities on vegetation.We conclude that vegetation reclamation will certainly compensate for the negative impacts of opencast coal mining activities on vegetation.Sufficient attention should be paid to the proportional allocation of plant species(herbs and shrubs) in the reclamation areas, and the restored vegetation in these areas needs to be protected for more than 6 a.Then, as the repair time increased, the vegetation condition of the reclamation areas would exceed that of the natural areas.
文摘During the 17th Century, Parral City in the Chihuahua State in Mexico was one of the most important miner zones in the whole world. After more than three centuries important amounts of residuals, known as tailings, with high contents of heavy metals were generated. These residuals are a potential risk for the environment and human health. Given to that, it decided to carry out the analysis of the concentrations of cadmium, lead, chromium, zinc and arsenics, in topsoil samples susceptible of airborne transport and accumulation in risky zones (populated areas). A 120 kin: area was selected, this include Parral City and its surroundings. From this area 30 samples were obtained. For this purpose, Atomic Absorption Spectroscopy technique was used, expecting high concentrations of heavy metals, above the permit limits, since several studies carried out in the same region, as in San Francisco del Oro Chihuahua, show that the concentrations of all the elements sampled, in topsoil, were above the limits. The analysis in the space distribution of the heavy metal detected will allow us to set the points with the highest susceptibility to the accumulation of those pollutants and to propose mitigation measures and control.
文摘A method of forecasting total seismic energy induced by longwall exploitation, based on changes in ground subsidence, is presented in the form of a linear regression model with one with one independent variable. In the method, ground subsidence is described with a cross-section area of a subsidence trough Pw along a line of observations in the direction of an advancing longwall front, approximately along the axis of the longwall area. Total seismic energy is determined on the basis of seismic energy data of tremors induced by exploitation. The presentation consists of a detailed method and evaluation of its predictive ability for the area of longwall exploitation within the region of one of the coal mines in the Upper Silesian Coal Basin. This method can be used for forecasting the total seismic energy released by tremors within the area directly connected with the exploitation, in which the seismic activity induced by this exploitation occurs. The estimation of the parameters of the determined model should each time be carried out with investigations of the correctness of the model. The method cannot be applied when the number of recorded phenomena is small and when there is insufficient data to make it possible to calculate the index Pw.
文摘The Mexican oregano "Lippia berlandieri Shauer" is a versatile plant, for multiple purposes and high potential adaptative capabilities. To evaluate the possibility to use oregano as a cover surface on tailings deposits and thereby mitigate the emission of particulate material with metals content, an experiment was carried out comparing the plant growing rate over a period of six-month in four substrates: tailings, vermicompost, "soil" of the region and a mixture of "tailings plus vermicompost". The statistical analysis shows a significant difference between treatments, resulting in the "soil" substrate with the best performance, followed by the mixture of"tailings plus vermicompost" treatment. The low permeability oftailings strongly affects the adaptability and growth of the oregano plant; however, the adaptation possibilities increase in the mixture oftailings with vermicompost or "soil" of the region.
基金supported by Management of Central Public-interest Scientific Institution Basal Research Fund (Grant Nos. K0905, K1020)National Key Technologies R & D Program (Grant Nos. 2006BAB01A07, 2006BAB01B05)
文摘Levels of seven metals (Mn, Cu, Zn, Pb, Cr, Cd, and Se) in the scalp hair of Daicun and Xiangtian inhabitants were determined by ICP-MS/AFS. Daicun, as an experimental site, is near Dexing Copper Mine, Jiangxi Province, China, and exposed to mining pollution; Xiangtian, as a control site, is free from any mining and other industrial pollution. The heavy metal distribution in the scalp hair of the two diverse population segments exposed to different environments was discussed against the background of the heavy metal content of local plants, waters, and soils. The results show: 1) Levels ofCu, Zn, Pb, Cr, and Cd in the scalp hair of Daicun inhabitants were higher compared with Xiangtian counterparts which showed higher comparative levels of Se and Mn. But there were no significant differences of the levels of Cu and Zn in the hair samples between the two villages. In the hair of the inhabitants in the two villages, the levels for Se, Zn, and Cu were lower, while the level for Mn was higher, than the corresponding levels from other regions of the world. Compared with the standard issued by the Trace Element Research Council of China for Chinese inhabitants there were serious Se, Zn, Cu and Cr-deficiency phenomena in the hair samples from Daicun and Xiangtian. 2) Against the geological background of high levels ofZn, Cu, Se and Cr, there were deficiencies of Zn, Cu, Se and Cr in the hair samples of the Daictm population. This may have been caused by the distribution forms of the heavy metals in the soils, and antagonism among the elements. 3) Principal Component Analysis (PCA) and Cluster Analysis (CA) indicated that the origins of the heavy metals in the hair samples from the two villages had some differences as well as some similarities, this should be contributed mainly to the influence of the mining activities.