期刊文献+
共找到230篇文章
< 1 2 12 >
每页显示 20 50 100
ARTIFICIAL NEURAL NETWORKS BASED GEARS MATERIAL SELECTION HYBRID INTELLIGENT SYSTEM 被引量:1
1
作者 X.C.Li W.X.Zhu +3 位作者 G.Chen D.S.Mei J.Zhang K.M.Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2003年第6期543-546,共4页
An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in mat... An artificial neural networks(ANNs) based gear material selection hybrid intelligent system is established by analyzing the individual advantages and weakness of expert system (ES) and ANNs and the applications in material select of them. The system mainly consists of tow parts: ES and ANNs. By being trained with much data samples, the back propagation (BP) ANN gets the knowledge of gear materials selection, and is able to inference according to user input. The system realizes the complementing of ANNs and ES. Using this system, engineers without materials selection experience can conveniently deal with gear materials selection. 展开更多
关键词 artificial neural network expert system hybrid intelligent sys-tem gear materials selection
下载PDF
A novel artificial intelligent model for predicting air overpressure using brain inspired emotional neural network 被引量:10
2
作者 Victor Amoako Temeng Yao Yevenyo Ziggah Clement Kweku Arthur 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第5期683-689,共7页
Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research i... Blasting is the live wire of mining and its operations,with air overpressure(AOp)recognised as an end product of blasting.AOp is known to be one of the most important environmental hazards of mining.Further research in this area of mining is required to help improve on safety of the working environment.Review of previous studies has shown that many empirical and artificial intelligence(AI)methods have been proposed as a forecasting model.As an alternative to the previous methods,this study proposes a new class of advanced artificial neural network known as brain inspired emotional neural network(BIENN)to predict AOp.The proposed BI-ENN approach is compared with two classical AOp predictors(generalised predictor and McKenzie formula)and three established AI methods of backpropagation neural network(BPNN),group method of data handling(GMDH),and support vector machine(SVM).From the analysis of the results,BI-ENN is the best by achieving the least RMSE,MAPE,NRMSE and highest R,VAF and PI values of 1.0941,0.8339%,0.1243%,0.8249,68.0512%and 1.2367 respectively and thus can be used for monitoring and controlling AOp. 展开更多
关键词 Air overpressure artificial intelligence Emotional neural network BLASTING mining
下载PDF
Using deep neural networks coupled with principal component analysis for ore production forecasting at open-pit mines
3
作者 Chengkai Fan Na Zhang +1 位作者 Bei Jiang Wei Victor Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期727-740,共14页
Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challe... Ore production is usually affected by multiple influencing inputs at open-pit mines.Nevertheless,the complex nonlinear relationships between these inputs and ore production remain unclear.This becomes even more challenging when training data(e.g.truck haulage information and weather conditions)are massive.In machine learning(ML)algorithms,deep neural network(DNN)is a superior method for processing nonlinear and massive data by adjusting the amount of neurons and hidden layers.This study adopted DNN to forecast ore production using truck haulage information and weather conditions at open-pit mines as training data.Before the prediction models were built,principal component analysis(PCA)was employed to reduce the data dimensionality and eliminate the multicollinearity among highly correlated input variables.To verify the superiority of DNN,three ANNs containing only one hidden layer and six traditional ML models were established as benchmark models.The DNN model with multiple hidden layers performed better than the ANN models with a single hidden layer.The DNN model outperformed the extensively applied benchmark models in predicting ore production.This can provide engineers and researchers with an accurate method to forecast ore production,which helps make sound budgetary decisions and mine planning at open-pit mines. 展开更多
关键词 Oil sands production Open-pit mining Deep learning Principal component analysis(PCA) artificial neural network mining engineering
下载PDF
Study on Missile Intelligent Fault Diagnosis System Based on Fuzzy NN Expert System 被引量:7
4
作者 Yang Jun Feng Zhensheng +1 位作者 Zhang Xien & Liu Pengyuan Dept. of Missile Engineering, Ordnance Engineering College, Shijiazhuang 050003, P. R. China 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第1期82-87,共6页
In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuz... In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment. 展开更多
关键词 artificial intelligence Electric fault location expert systems Fuzzy sets Missiles neural networks
下载PDF
Artificial Neural Network for Websites Classification with Phishing Characteristics
5
作者 Ricardo Pinto Ferreira Andréa Martiniano +4 位作者 Domingos Napolitano Marcio Romero Dacyr Dante De Oliveira Gatto Edquel Bueno Prado Farias Renato José Sassi 《Social Networking》 2018年第2期97-109,共13页
Several threats are propagated by malicious websites largely classified as phishing. Its function is important information for users with the purpose of criminal practice. In summary, phishing is a technique used on t... Several threats are propagated by malicious websites largely classified as phishing. Its function is important information for users with the purpose of criminal practice. In summary, phishing is a technique used on the Internet by criminals for online fraud. The Artificial Neural Networks (ANN) are computational models inspired by the structure of the brain and aim to simu-late human behavior, such as learning, association, generalization and ab-straction when subjected to training. In this paper, an ANN Multilayer Per-ceptron (MLP) type was applied for websites classification with phishing cha-racteristics. The results obtained encourage the application of an ANN-MLP in the classification of websites with phishing characteristics. 展开更多
关键词 artificial intelligence artificial neural network Pattern Recognition PHISHING CHARACTERISTICS SOCIAL engineering
下载PDF
Application of neural network to speed-up equilibrium calculations in compositional reservoir simulation
6
作者 Wagner Q.Barros Adolfo P.Pires 《Artificial Intelligence in Geosciences》 2021年第1期202-214,共13页
Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even... Compositional reservoir simulation is an important tool to model fluid flow in oil and gas reservoirs.Important investment decisions regarding oil recovery methods are based on simulation results,where hundred or even thousand of different runs are performed.In this work,a new methodology using artificial intelligence to learn the thermodynamic equilibrium is proposed.This algorithm is used to replace the classical equilibrium workflow in reservoir simulation.The new method avoids the stability test for single-phase cells in most cases and provides an accurate two-phase flash initial estimate.The classical and the new workflow are compared for a gas-oil mixing case,showing a simulation time speed-up of approximately 50%.The new method can be used in compositional reservoir simulations. 展开更多
关键词 neural network Compositional simulation artificial intelligence Flash calculation Reservoir engineering
下载PDF
Exploring deep learning for landslide mapping:A comprehensive review 被引量:1
7
作者 Zhi-qiang Yang Wen-wen Qi +1 位作者 Chong Xu Xiao-yi Shao 《China Geology》 CAS CSCD 2024年第2期330-350,共21页
A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized f... A detailed and accurate inventory map of landslides is crucial for quantitative hazard assessment and land planning.Traditional methods relying on change detection and object-oriented approaches have been criticized for their dependence on expert knowledge and subjective factors.Recent advancements in highresolution satellite imagery,coupled with the rapid development of artificial intelligence,particularly datadriven deep learning algorithms(DL)such as convolutional neural networks(CNN),have provided rich feature indicators for landslide mapping,overcoming previous limitations.In this review paper,77representative DL-based landslide detection methods applied in various environments over the past seven years were examined.This study analyzed the structures of different DL networks,discussed five main application scenarios,and assessed both the advancements and limitations of DL in geological hazard analysis.The results indicated that the increasing number of articles per year reflects growing interest in landslide mapping by artificial intelligence,with U-Net-based structures gaining prominence due to their flexibility in feature extraction and generalization.Finally,we explored the hindrances of DL in landslide hazard research based on the above research content.Challenges such as black-box operations and sample dependence persist,warranting further theoretical research and future application of DL in landslide detection. 展开更多
关键词 Landslide Mapping Quantitative hazard assessment Deep learning artificial intelligence neural network Big data Geological hazard survery engineering
下载PDF
Intelligent Decision Support System for Bank Loans Risk Classification 被引量:1
8
作者 杨保安 马云飞 俞莲 《Journal of Donghua University(English Edition)》 EI CAS 2001年第2期144-147,共4页
Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BL... Intelligent Decision Support System (IISS) for Bank Loans Risk Classification (BLRC), based on the way of integration Artificial Neural Network (ANN) and Expert System (ES), is proposed. According to the feature of BLRC, the key financial and non-financial factors are analyzed. Meanwhile, ES and Model Base (MB) which contain ANN are designed . The general framework,interaction and integration of the system are given. In addition, how the system realizes BLRC is elucidated in detail. 展开更多
关键词 BANK LOANS Risk Classification artificial neural network ( ANN ) expert system ( ES ) Intelligent Decision Support system (IDSS).
下载PDF
一种增强型双种群粒子群算法的设计与实现 被引量:1
9
作者 张彦超 王晓丽 苏奎 《智能计算机与应用》 2024年第5期194-198,共5页
粒子群算法作为一种具有收敛速度快、易于实现和参数调节少等优点的群体智能算法,被广泛应用于函数与组合优化、机器学习等众多领域。在粒子群及其众多修改算法中惯性权重选择对算法性能起到较大的作用。为此,在经典粒子群算法上针对惯... 粒子群算法作为一种具有收敛速度快、易于实现和参数调节少等优点的群体智能算法,被广泛应用于函数与组合优化、机器学习等众多领域。在粒子群及其众多修改算法中惯性权重选择对算法性能起到较大的作用。为此,在经典粒子群算法上针对惯性权重提出了改进策略,设计了一种增强型双种群粒子群算法(EDUPSO)。当粒子在进化中将较小的惯性因子赋予到此次进化到最优位置的种群,将较大的惯性因子赋予到此次没有进化到当前最优位的种群。通过此思路提出了算法的设计和实现方式,并通过多个不同的测试函数分析了该算法与其他经典改进算法在性能上的差异,通过测试的结果可以看出相对于经典的粒子群算法及经典改进算法,此算法在搜索的速度、稳定性及精度上都有明显的优势。 展开更多
关键词 粒子群算法改进 神经网络优化 无线定位优化 人工智能与数据挖掘
下载PDF
基于深度学习的湖南地区清朝古桥可视化研究
10
作者 龙馨雨 李哲 张景昊 《山西建筑》 2024年第8期14-18,共5页
近年来,随着人工智能相关技术的飞速发展,机器学习和深度学习等技术在计算机视觉和自然语言处理等领域都有了巨大的突破。利用人工智能相关技术从大量零散的古籍文本中挖掘有效信息,可以在保持人工成本的前提下,极大提高建筑类古籍的利... 近年来,随着人工智能相关技术的飞速发展,机器学习和深度学习等技术在计算机视觉和自然语言处理等领域都有了巨大的突破。利用人工智能相关技术从大量零散的古籍文本中挖掘有效信息,可以在保持人工成本的前提下,极大提高建筑类古籍的利用率,促进历史建筑的古籍文献基础研究。将采用基于卷积神经网络的Bert-BiLSTM-CRF模型图像分类方法和基于BiLSTM-CRF的命名实体识别方法实体方法对湖南清代地方志古籍进行古桥相关信息提取。建立数据库并将挖掘出桥梁相关的有效信息从定性和定量两个方面进行可视化研究。总结出桥名的命名方式、古桥建设情况,并结合ArcGIS进行空间分布特征分析,为历史建筑文献研究和古籍挖掘提供新思路。 展开更多
关键词 卷积神经网络 文本挖掘 古桥研究 可视化 人工智能
下载PDF
Optimization of GERD Therapeutic Regimen Based on ANN and Realization of MATLAB
11
作者 Wei-Wu WANG Rui-Qing NI +2 位作者 Fang-Yan YU Guo-Feng LOU Cai-Dan ZHAO 《Digital Chinese Medicine》 2018年第1期47-55,共9页
Objective To optimize therapeutic regimens for gastro-esophageal reflux disease(GERD),artificial neural networks(ANNs)are used to simulate and set up an intelligent traditional Chinese medicine(TCM)treatment system.Me... Objective To optimize therapeutic regimens for gastro-esophageal reflux disease(GERD),artificial neural networks(ANNs)are used to simulate and set up an intelligent traditional Chinese medicine(TCM)treatment system.Methods ANNs were employed for machine learning;the clinical syndrome differentiation and treatment determination were simulated through systematic learning of therapeutic regimens for GERD symptoms in the ancient literature;and case simulation was conducted to achieve objective verification.Results The conformity of machinery prescription with the ancient literature exceeded95%.Conclusion The application of machine learning to TCM intelligent prescription is feasible and worthy of further study. 展开更多
关键词 artificial intelligence TCM expert system Gastro-esophageal reflux disease artificial neural network MATLAB
下载PDF
基于人工智能的管理信息系统设计与实现
12
作者 王丽芳 《移动信息》 2024年第11期284-286,311,共4页
文中分析了人工智能技术和管理信息系统的发展前景,随后在B/S架构的基础上建立了管理信息系统进行数据挖掘,并基于神经网络建立了智能算法结构。最后,将该系统应用于现代教学智能管理信息系统之中,通过实验证明其具有较高的应用价值。
关键词 人工智能 神经网络 数据挖掘 管理信息系统
下载PDF
Pedestrian Physical Education Training Over Visualization Tool
13
作者 Tamara al Shloul Israr Akhter +3 位作者 Suliman A.Alsuhibany Yazeed Yasin Ghadi Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2022年第11期2389-2405,共17页
E-learning approaches are one of the most important learning platforms for the learner through electronic equipment.Such study techniques are useful for other groups of learners such as the crowd,pedestrian,sports,tra... E-learning approaches are one of the most important learning platforms for the learner through electronic equipment.Such study techniques are useful for other groups of learners such as the crowd,pedestrian,sports,transports,communication,emergency services,management systems and education sectors.E-learning is still a challenging domain for researchers and developers to find new trends and advanced tools and methods.Many of them are currently working on this domain to fulfill the requirements of industry and the environment.In this paper,we proposed a method for pedestrian behavior mining of aerial data,using deep flow feature,graph mining technique,and convocational neural network.For input data,the state-of-the-art crowd activity University of Minnesota(UMN)dataset is adopted,which contains the aerial indoor and outdoor view of the pedestrian,for simplification of extra information and computational cost reduction the pre-processing is applied.Deep flow features are extracted to find more accurate information.Furthermore,to deal with repetition in features data and features mining the graph mining algorithm is applied,while Convolution Neural Network(CNN)is applied for pedestrian behavior mining.The proposed method shows 84.50%of mean accuracy and a 15.50%of error rate.Therefore,the achieved results show more accuracy as compared to state-ofthe-art classification algorithms such as decision tree,artificial neural network(ANN). 展开更多
关键词 artificial intelligence behavior mining convolution neural network(CNN) deep flow e-learning environment
下载PDF
Energy-Efficiency Improvement in Mine-Railway Operation Using AI
14
作者 Ali Soofastaei 《Journal of Energy and Power Engineering》 2019年第9期333-348,共16页
The mining industry consumes an enormous amount of energy globally,the main part of which is conservable.Diesel is a key source of energy in mining operations,and mine locomotives have significant diesel consumption.T... The mining industry consumes an enormous amount of energy globally,the main part of which is conservable.Diesel is a key source of energy in mining operations,and mine locomotives have significant diesel consumption.Train speed has been recognized as the primary parameter affecting locomotive fuel consumption.In this study,an artificial intelligence(AI)look-forward control is developed as an online method for energy-efficiency improvement in mine-railway operation.An AI controller will modify the desired train-speed profile by accounting for the grade resistance and speed limits of the route ahead.Travel-time increment is applied as an improvement constraint.Recent models for mine-train-movement simulation have estimated locomotive fuel burn using an indirect index.An AI-developed algorithm for mine-train-movement simulation can correctly predict locomotive diesel consumption based on the considered values of the transfer parameters in this paper.This algorithm finds the mine-locomotive subsystems,and satisfies the practical diesel-consumption data specified in the locomotive’s manufacturer catalog.The model developed in this study has two main sections designed to estimate locomotive fuel consumption in different situations by using an artificial neural network(ANN),and an optimization section that applies a genetic algorithm(GA)to optimize train speed for the purpose of minimizing locomotive diesel consumption.The AI model proposed in this paper is learned and validated using real datasets collected from a mine-railway route in Western Australia.The simulation of a mine train with a commonly used locomotive in Australia GeneralMotors SD40-2(GM SD40-2)on a local railway track illustrates a significant reduction in diesel consumption along with a satisfactory travel-time increment.The simulation results also demonstrate that the AI look-forward controller has faster calculations than control systems based that use dynamic programming. 展开更多
关键词 Fuel consumption energy efficiency LOCOMOTIVE mining RAILWAY simulation optimization artificial intelligence neural network genetic algorithm look-forward control
下载PDF
医疗诊断系统专家知识的表达与获取方法 被引量:14
15
作者 孙佰清 潘启树 +2 位作者 冯英浚 张长胜 关振中 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2001年第1期134-136,共3页
讨论了神经网络理论在智能医疗诊断系统方面的应用 ,在分析医疗诊断专家知识不完备性的基础上 ,研究了适应医疗诊断系统专家知识表达与获取的专家系统与神经网络集成方法 .提出了采用单参数动态搜索算法训练神经网络 ,其效果明显优于传... 讨论了神经网络理论在智能医疗诊断系统方面的应用 ,在分析医疗诊断专家知识不完备性的基础上 ,研究了适应医疗诊断系统专家知识表达与获取的专家系统与神经网络集成方法 .提出了采用单参数动态搜索算法训练神经网络 ,其效果明显优于传统的BP算法 .设计了专家系统与神经网络集成的心血管疾病智能医疗诊断系统 ,在临床实践中取得了较好的效果 ,证明专家系统与神经网络的集成是医疗诊断系统专家知识表达与获取的有效方法 . 展开更多
关键词 医疗诊断系统 神经网络 专家知识表达 获取方法 单参数动态搜索算法
下载PDF
人工智能技术在网络空间安全防御中的应用 被引量:57
16
作者 吴元立 司光亚 罗批 《计算机应用研究》 CSCD 北大核心 2015年第8期2241-2244,2253,共5页
如何及时处理海量网络态势信息并有效应对动态演化的网络攻击是网络空间安全防御面临的主要挑战,人工智能技术由于具有传统方法所不具备的智能特性,近年来在网络空间安全防御中得到了广泛关注,并取得了大量的研究成果。综述了近年来神... 如何及时处理海量网络态势信息并有效应对动态演化的网络攻击是网络空间安全防御面临的主要挑战,人工智能技术由于具有传统方法所不具备的智能特性,近年来在网络空间安全防御中得到了广泛关注,并取得了大量的研究成果。综述了近年来神经网络、多agent系统以及专家系统等人工智能技术在网络空间安全防御中的主要应用和方法,分析比较了它们各自的应用特点,给出了未来的研究与发展趋势。 展开更多
关键词 人工智能 多AGENT系统 神经网络 专家系统 网络防御
下载PDF
开采影响下建筑物损害程度的人工神经网络预测模型 被引量:33
17
作者 郭文兵 吴财芳 邓喀中 《岩石力学与工程学报》 EI CAS CSCD 北大核心 2004年第4期583-587,共5页
在综合分析开采影响下建筑物损坏程度影响因素的基础上,采用自适应BP神经网络技术建立了建筑物采动损坏程度的预测模型。以大量的建筑物采动损坏实例作为学习训练样本和测试样本,对模型预测结果与实际值进行了对比分析。结果表明,用人... 在综合分析开采影响下建筑物损坏程度影响因素的基础上,采用自适应BP神经网络技术建立了建筑物采动损坏程度的预测模型。以大量的建筑物采动损坏实例作为学习训练样本和测试样本,对模型预测结果与实际值进行了对比分析。结果表明,用人工神经网络方法预测建筑物采动损害程度是可行的。为开采影响下建筑物损坏程度预测和评价探索出了一种新的方法。 展开更多
关键词 地下工程 采动损害 建筑物 神经网络 智能预测 人工神经网络
下载PDF
音乐特征识别的研究综述 被引量:28
18
作者 刘丹 张乃尧 朱汉城 《计算机工程与应用》 CSCD 北大核心 2002年第24期74-77,共4页
文章全面总结了音乐特征识别领域所取得的主要研究成果,重点介绍了音乐特征的提取、描述、分析和识别等方面采用的各种智能分析处理方法,并对该领域中存在的主要困难和将来的发展方向提出了一些看法。
关键词 音乐特征识别 音乐数据库 音乐教学 音乐信息处理 人工智能 神经网络 模糊系统 专家系统 计算机模拟
下载PDF
专家系统研究现状与展望 被引量:68
19
作者 杨兴 朱大奇 桑庆兵 《计算机应用研究》 CSCD 北大核心 2007年第5期4-9,共6页
回顾了专家系统发展的历史和现状。对目前比较成熟的专家系统模型进行分析,指出各自的特点和局限性。最后对专家系统的热点进行展望并介绍了新型专家系统。
关键词 专家系统 知识获取 数据挖掘 多代理系统 人工神经网络
下载PDF
人工智能在电力系统中的应用 被引量:45
20
作者 韩祯祥 文福拴 张琦 《电力系统自动化》 EI CSCD 北大核心 2000年第2期2-10,共9页
首先对第 4届“智能系统在电力系统中的应用”国际会议发表的全部论文做了介绍 ,之后概述了近几年来较受关注的分布式人工智能技术、粗糙集理论和数据挖掘方法在电力系统中的应用情况。
关键词 人工智能 专家系统 模糊集 电力系统 距离保护
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部