期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Multi-scale attention encoder for street-to-aerial image geo-localization 被引量:2
1
作者 Songlian Li Zhigang Tu +1 位作者 Yujin Chen Tan Yu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第1期166-176,共11页
The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance g... The goal of street-to-aerial cross-view image geo-localization is to determine the location of the query street-view image by retrieving the aerial-view image from the same place.The drastic viewpoint and appearance gap between the aerial-view and the street-view images brings a huge challenge against this task.In this paper,we propose a novel multiscale attention encoder to capture the multiscale contextual information of the aerial/street-view images.To bridge the domain gap between these two view images,we first use an inverse polar transform to make the street-view images approximately aligned with the aerial-view images.Then,the explored multiscale attention encoder is applied to convert the image into feature representation with the guidance of the learnt multiscale information.Finally,we propose a novel global mining strategy to enable the network to pay more attention to hard negative exemplars.Experiments on standard benchmark datasets show that our approach obtains 81.39%top-1 recall rate on the CVUSA dataset and 71.52%on the CVACT dataset,achieving the state-of-the-art performance and outperforming most of the existing methods significantly. 展开更多
关键词 global mining strategy image geo-localization multiscale attention encoder street-to-aerial cross-view
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部