Fifteen basaltic rock samples were collected from central Jordan at the Atarous volcanism basaltic flow area. The samples cover about 8 km2 from the Atarous Basalt flow (AB). The AB flow was introduced in the Miocene ...Fifteen basaltic rock samples were collected from central Jordan at the Atarous volcanism basaltic flow area. The samples cover about 8 km2 from the Atarous Basalt flow (AB). The AB flow was introduced in the Miocene to Pleistocene periods. The samples analyze major and trace elements by using XRF. Petrography, Geochemistry and Petrogensis have investigation to carried out for the AB. The petrography analyses of the AB rocks show they are composed of plagioclase (labradorite and bytownite), pyroxene (augite), and olivine (forsterite);accessory minerals include apatite and secondary minerals magnetite, ilmenite, spinel and iddingsite. The AB is classified within alkaline to sub-alkaline and tholeiitic to Calc-Alkaline basalt. The Mg# range between 0.39 and 0.49 of basalt samples exhibits different degrees of fractionation with a low degree of melting < 15% as indicated from the varying concentration of incompatible trace elements Ba, Rb, Sr. Trace elements of primary magna show low variable abundances of compatible and incompatible elements, which reflecs a homogenous source. Geochemical parameters such as Mg# and high Ti contents indicate that the corresponding magmas are of primary origin. The tectonic setting of AB is explained by using discrimination diagrams, Ti-Zr-Sr and Nb-Zr-Y and Ti-Zr-Y, the AB plotted within the plate basalt, alkali basalt and Calk alkaline basalt field, respectively. The spider diagram shows the samples AB enrichment of the Ba, K, Nb and Ce, depletion of Nb and Y. The AB exhibited positive Nb, Ce and Ti anomalies, and negative anomalies of Ba, Sr, and P. It is attributed to the fractionation of feldspar for Ba and Sr and apatite for P depletion. The spider diagram showed a positive Nb peak, which conforms to the tertiary and to recent continental alkali basalt provinces and indicates that the AB is the product of lithosphere from upwelling asthenosphere mantle.展开更多
Petrographic, mineralogical and geochemical investigations were carried out on representative?samples from the Mudawwara-Quwayra Dike (MQD) in southernJordan. The MQD intruded Paleozoic and Cretaceous rocks as sub-ver...Petrographic, mineralogical and geochemical investigations were carried out on representative?samples from the Mudawwara-Quwayra Dike (MQD) in southernJordan. The MQD intruded Paleozoic and Cretaceous rocks as sub-vertical basaltic plugs, striking NW-SE along a fault zone and extending for more than 100 km. The MQD forms irregularly positive features, and is represented by symmetrical, elliptical, elongated or circular hills. It comprises thin basaltic layers intercalated?with pyroclastics and inclusions of different size and lithology, including limestone, sandstone, phosphate, quartzite, and marble. Petrographically, the rock exhibits phyric, porphyritic, vitrophyric and locally glomerophyritic textures manifested by plagioclase, clinopyroxene and rare?olivine and set in a matrix of plagioclase, pyroxene, brown glass and opaque phases. Clinopyroxene?and olivine phenocyrsts show disequilibrium textures such as reaction/resorbed rims in the?forms of corroded ends. The paragenetic sequence shows that olivine is the first phase to be crystallized and coexisting with pyroxene at sometime, while pyroxene continues crystallization. Plagioclase might have crystallized in contemporaneous later than the pyroxene. The MQD rocks are classified?as basalt and exhibit a narrow range of silica with a unique subalkaline affinity. This is most?probably attributed to assimilation of the abundant siliciclastic inclusions by the ascending magma. Emplacement of the MQD is attributed to regional phase of magmatism in Jordan and Saudi Arabia, which is probably the peripheral extension of a large magmatic event widely exposed in the Red Sea realm.展开更多
Vranic site is a sand quarry that is located on the southern foothills of Papuk Mountain.From bottom to top of the succession,three sedimentary units have been recognized as:Unit 1 containing massive sand with scatter...Vranic site is a sand quarry that is located on the southern foothills of Papuk Mountain.From bottom to top of the succession,three sedimentary units have been recognized as:Unit 1 containing massive sand with scattered gravel-sized clasts,marl cobbles and boulders,and abundant marine mammal and fish fossils;Unit 2 consisting of sand intercalated with silt,clay and gravel,which may be horizontally bedded;and Unit 3,which is an erosionally-based lenticular matrix to clast-supported structureless gravel.The basal part of Unit 1 shows numerous reworked skeletal remains of Miocene marine mammals.Cosmogenic radionuclides constrain the age of burial of Unit 1 to 895±211 ka,while the source area of Unit 1 had a quick denudation.The massive sands deposited on the slopes of Papuk Mountain were vulnerable to erosion due to the absence of clay.Heavy rainfall or water from snow melting created flash floods that infiltrated the sands,thereby causing slope destabilization and deformation.This process led to slumps that were transformed into a sandy debris flow.This sediment was probably deposited during the interglacial marine isotope age(MIS)21 period when the scarce vegetation and a warmer climate favored the melting of permafrost ice and consequently triggered slope movements during MIS 22.The reworked skeletal material sampled at the Vranic site comprises fossilized fish along with mammal bones and teeth.Thus,the Vranic site represents an important site for cetacean fossil remains and serves as an important data source for marine life in the Central Paratethys.展开更多
Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The re...Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.展开更多
文摘Fifteen basaltic rock samples were collected from central Jordan at the Atarous volcanism basaltic flow area. The samples cover about 8 km2 from the Atarous Basalt flow (AB). The AB flow was introduced in the Miocene to Pleistocene periods. The samples analyze major and trace elements by using XRF. Petrography, Geochemistry and Petrogensis have investigation to carried out for the AB. The petrography analyses of the AB rocks show they are composed of plagioclase (labradorite and bytownite), pyroxene (augite), and olivine (forsterite);accessory minerals include apatite and secondary minerals magnetite, ilmenite, spinel and iddingsite. The AB is classified within alkaline to sub-alkaline and tholeiitic to Calc-Alkaline basalt. The Mg# range between 0.39 and 0.49 of basalt samples exhibits different degrees of fractionation with a low degree of melting < 15% as indicated from the varying concentration of incompatible trace elements Ba, Rb, Sr. Trace elements of primary magna show low variable abundances of compatible and incompatible elements, which reflecs a homogenous source. Geochemical parameters such as Mg# and high Ti contents indicate that the corresponding magmas are of primary origin. The tectonic setting of AB is explained by using discrimination diagrams, Ti-Zr-Sr and Nb-Zr-Y and Ti-Zr-Y, the AB plotted within the plate basalt, alkali basalt and Calk alkaline basalt field, respectively. The spider diagram shows the samples AB enrichment of the Ba, K, Nb and Ce, depletion of Nb and Y. The AB exhibited positive Nb, Ce and Ti anomalies, and negative anomalies of Ba, Sr, and P. It is attributed to the fractionation of feldspar for Ba and Sr and apatite for P depletion. The spider diagram showed a positive Nb peak, which conforms to the tertiary and to recent continental alkali basalt provinces and indicates that the AB is the product of lithosphere from upwelling asthenosphere mantle.
文摘Petrographic, mineralogical and geochemical investigations were carried out on representative?samples from the Mudawwara-Quwayra Dike (MQD) in southernJordan. The MQD intruded Paleozoic and Cretaceous rocks as sub-vertical basaltic plugs, striking NW-SE along a fault zone and extending for more than 100 km. The MQD forms irregularly positive features, and is represented by symmetrical, elliptical, elongated or circular hills. It comprises thin basaltic layers intercalated?with pyroclastics and inclusions of different size and lithology, including limestone, sandstone, phosphate, quartzite, and marble. Petrographically, the rock exhibits phyric, porphyritic, vitrophyric and locally glomerophyritic textures manifested by plagioclase, clinopyroxene and rare?olivine and set in a matrix of plagioclase, pyroxene, brown glass and opaque phases. Clinopyroxene?and olivine phenocyrsts show disequilibrium textures such as reaction/resorbed rims in the?forms of corroded ends. The paragenetic sequence shows that olivine is the first phase to be crystallized and coexisting with pyroxene at sometime, while pyroxene continues crystallization. Plagioclase might have crystallized in contemporaneous later than the pyroxene. The MQD rocks are classified?as basalt and exhibit a narrow range of silica with a unique subalkaline affinity. This is most?probably attributed to assimilation of the abundant siliciclastic inclusions by the ascending magma. Emplacement of the MQD is attributed to regional phase of magmatism in Jordan and Saudi Arabia, which is probably the peripheral extension of a large magmatic event widely exposed in the Red Sea realm.
基金supported by Projects no.181-18110961093 of the Croatian Ministry of ScienceEducation and Sports and by the project NKFIH 124807 of the National Research,Development and Innovation Office of Hungary+1 种基金The measurements performed at ASTER(CEREGE,Aix-en-Provence,France)were supported by the INSU/CNRS,the French Ministry of Research and Higher Education,IRD and CEAAMS measurements performed at VERA were supported by the RADIATE project 19001688-ST under the Grant Agreement 824096 from the EU Research and Innovation programme HORIZON 2020.
文摘Vranic site is a sand quarry that is located on the southern foothills of Papuk Mountain.From bottom to top of the succession,three sedimentary units have been recognized as:Unit 1 containing massive sand with scattered gravel-sized clasts,marl cobbles and boulders,and abundant marine mammal and fish fossils;Unit 2 consisting of sand intercalated with silt,clay and gravel,which may be horizontally bedded;and Unit 3,which is an erosionally-based lenticular matrix to clast-supported structureless gravel.The basal part of Unit 1 shows numerous reworked skeletal remains of Miocene marine mammals.Cosmogenic radionuclides constrain the age of burial of Unit 1 to 895±211 ka,while the source area of Unit 1 had a quick denudation.The massive sands deposited on the slopes of Papuk Mountain were vulnerable to erosion due to the absence of clay.Heavy rainfall or water from snow melting created flash floods that infiltrated the sands,thereby causing slope destabilization and deformation.This process led to slumps that were transformed into a sandy debris flow.This sediment was probably deposited during the interglacial marine isotope age(MIS)21 period when the scarce vegetation and a warmer climate favored the melting of permafrost ice and consequently triggered slope movements during MIS 22.The reworked skeletal material sampled at the Vranic site comprises fossilized fish along with mammal bones and teeth.Thus,the Vranic site represents an important site for cetacean fossil remains and serves as an important data source for marine life in the Central Paratethys.
基金This paper is supported by the National Natural Science Foundation of china (Nos. 40576031, 40476030, 40631007).
文摘Combined data of physical property, benthic foraminifera, and stable isotopes from ODP Sites 1148, 1146, and 1143 are used to discuss deep water evolution in the South China Sea (SCS) since the Early Miocene. The results indicate that 3 lithostratigraphic units, respectively corresponding to 21-17 Ma, 15-10 Ma, and 10-5 Ma with positive red parameter (a^*) marking the red brown sediment color represent 3 periods of deep water ventilation. The first 2 periods show a closer link to contemporary production of the Antarctic Bottom Water (AABW) and Northern Component Water(NCW), indicating a free connection of deep waters between the SCS and the open ocean before 10 Ma.After 10 Ma, red parameter dropped but stayed higher than the modern value (a^*=0), the CaCO3 percentage difference between Site 1148 from a lower deepwater setting and Site 1146 from an upper deepwater setting enlarged significantly, and benthic species which prefer oxygen-rich bottom conditions dramatically decreased. Coupled with a major negative excursion of benthic δ^13Cat ~10 Ma,these parameters may denote a weakening in the control of the SCS deep water by the open ocean.Probably they mark the birth of a local deep water due to shallow waterways or rise of sill depths during the course of sea basin closing from south to east by the west-moving Philippine Arc after the end of SCS seafloor spreading at 16-15 Ma. However, it took another 5 Ma before the dissolved oxygen approached close to the modern level. Although the oxygen level continued to stabilize, several Pacific Bottom Water (PBW) and Pacific Deep Water (PDW) marker species rapidly increased since ~6 Ma,followed by a dramatic escalation in planktonic fragmentation which indicates high dissolution especially after ~5 Ma. The period of 5-3 Ma saw the strongest stratified deepwater in the then SCS, as indicated by up to 40﹪ CaCO3 difference between Sites 1148 and 1146. Apart from a strengthening PDW as a result of global cooling and ice cap buildup on northern high latitudes, a deepening sea basin due to stronger subduction eastward may also have triggered the influx of more corrosive waters from the deep western Pacific. Since 3 Ma, the evolution of the SCS deep water entered a modern phase, as characterized by relative stable 10﹪ CaCO3 difference between the two sites and increase in infaunal benthic species which prefer a low oxygenated environment. The subsequent reduction of PBW and PDW marker species at about 1.2 Ma and 0.9 Ma and another significant negative excursion of benthic δ^13Cto a Neogene minimum at ~0.9 Ma together convey a clear message that the PBW largely disappeared and the PDW considerably weakened in the Mid-Pleistocene SCS. Therefore, the true modern mode SCS deep water started to form only during the "Mid-Pleistocene climatic transition" probably due to the rise of sill depths under the Bashi Strait.