To determine mirror surface finishing conditions and efficient and economical superfinishing conditions for pure titanium and titanium alloys, an abrasive film is used when superfinishing is performed under varying co...To determine mirror surface finishing conditions and efficient and economical superfinishing conditions for pure titanium and titanium alloys, an abrasive film is used when superfinishing is performed under varying conditions. These conditions include the workpiece rotation speed, the oscillation speed, the contact pressure of the roller, the hardness of the roller, and the type of abrasive film. The superfinishing device is applied to polishing a thin and long cylindrical bar. A micro-finishing film and a lapping film were used as abrasive films. A1203 grains or SiC grains were used as abrasives. The surface roughness of a polished workpiece was measured using a stylus-type surface-roughness measuring instrument. As a result, the conditions to improve the polishing surface efficiently include high values for the workpiece rotation speed, oscillation speed and contact pressure. The roller hardness has no effect on the efficient polishing conditions. The mirror finish of a surface can be created using lapping film of 3 μm with Al2O3 grains after polishing to a steady surface roughness under the efficient polishing conditions.展开更多
nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron micr...nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron microscope, and stylus surface instrument. The diamond tool sharpness has a considerable influence on the machined surface, therefore a novel technique—brightness modulation for measuring accurately the edge of the cutter is proposed. Mirror surfaces are assessed by another novel technique—a measure of their reflectivity. A third technique, single grit diamond machining is carried out. It supplies a experimental evidence for verifying the obtained high quality turned surfaces.展开更多
基金work supported by the Second Stage of Brain Korea 21 Projects of Korea
文摘To determine mirror surface finishing conditions and efficient and economical superfinishing conditions for pure titanium and titanium alloys, an abrasive film is used when superfinishing is performed under varying conditions. These conditions include the workpiece rotation speed, the oscillation speed, the contact pressure of the roller, the hardness of the roller, and the type of abrasive film. The superfinishing device is applied to polishing a thin and long cylindrical bar. A micro-finishing film and a lapping film were used as abrasive films. A1203 grains or SiC grains were used as abrasives. The surface roughness of a polished workpiece was measured using a stylus-type surface-roughness measuring instrument. As a result, the conditions to improve the polishing surface efficiently include high values for the workpiece rotation speed, oscillation speed and contact pressure. The roller hardness has no effect on the efficient polishing conditions. The mirror finish of a surface can be created using lapping film of 3 μm with Al2O3 grains after polishing to a steady surface roughness under the efficient polishing conditions.
文摘nm roughness value of silicon surface by diamond turning is obtained firstly and three novel techniques are proposed. The surface integrity is studied in detail by using atomic force microscope, scanning electron microscope, and stylus surface instrument. The diamond tool sharpness has a considerable influence on the machined surface, therefore a novel technique—brightness modulation for measuring accurately the edge of the cutter is proposed. Mirror surfaces are assessed by another novel technique—a measure of their reflectivity. A third technique, single grit diamond machining is carried out. It supplies a experimental evidence for verifying the obtained high quality turned surfaces.