The effect of the severity of an organosolv treatment of Miscanthus x giganteus on antioxidant capacity of the obtained lignin was studied. Four organosolv lignins extracted with different severity conditions were cho...The effect of the severity of an organosolv treatment of Miscanthus x giganteus on antioxidant capacity of the obtained lignin was studied. Four organosolv lignins extracted with different severity conditions were chosen and tested. Results obtained using the methyl linoleate method have shown a correlation between oxygen uptake index and the combined severity. It was found that lignin extracted at higher severity pre-treatment and with a higher phenolic hydroxyl content, lower aliphatic hydroxyl content, molecular weight and polydispersity has the highest antioxidant capacity.展开更多
The US Department of Energy is currently building strategies for the expansion of clean and renewable energy sources, and tall, rapidly-growing grasses such as giant miscanthus (Miscanthus × giganteus) and giant ...The US Department of Energy is currently building strategies for the expansion of clean and renewable energy sources, and tall, rapidly-growing grasses such as giant miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax) are two of the many of species that could fill this renewable energy niche. The objective was to compare stalk growth components of giant miscanthus and giant reed, in a low-input system (no irrigation and no fertilizer use) in Arkansas, USA. Due to the potential invasiveness of giant reed, our study was conducted on an upland site to minimize escape. Plant height and dry weight per stalk were measured every week for two consecutive growing seasons in 2012 and 2013. Leaf area index (LAI) was measured every two weeks from May to September in 2012. A significant species × day interaction occurred for plant height and dry weight per stalk, due to the relatively greater height and weight of giant reed compared to giant miscanthus after May. Stalk elongation rate was greater for giant reed than giant miscanthus (1.85 and 1.11 cm day-1, respectively). Leaf area index differed between species, giant reed (10.4 m2 m-2) > giant miscanthus (4.4 m2 m-2). We showed that giant reed produced taller, heavier stalks, and had a greater stalk elongation rate, compared to giant miscanthus. For sustainable bioenergy production from giant reed in Arkansas, further studies should be performed to determine ideal number of harvests per year and associated production cost.展开更多
The number and karyotype of Miscanthus sinensis chromosome was researched with root tip squash method. The formula for karyotype is 2n =2x=48 =26m +16Sm +6St and belonged to the type of 2C. The number of Miscanthus ...The number and karyotype of Miscanthus sinensis chromosome was researched with root tip squash method. The formula for karyotype is 2n =2x=48 =26m +16Sm +6St and belonged to the type of 2C. The number of Miscanthus sinensis chromosome is 2n=48. The basic number of chromosome is x=24.展开更多
[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinens...[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinensis was pretreated with 60Co y-ray irradiation and alkaline hydrogen peroxide, to analyze their effects on re- ducing sugar yield of enzymatic hydrolysis. [Result] After pretreatment with 400 kGy 60Co y-ray irradiation, reducing sugar yield in the enzymolysis process of M sinensis was 76.24 mg/g; after synergic pretreatment with 400 kGy 60Co y-ray irradiation and alkaline hydrogen peroxide, reducing sugar yield in the enzymolysis process of M. sinensis was 505.08 mg/g, which was improved by 5.6 times compared to that in pretreatment with 400 kGy 60Co y-ray irradiation. Based on process optimization, the optimal hydrolysis conditions were obtained: pretreatment temperature 30 ℃, NaOH concentration 1.2%, hydrogen peroxide concentration 2%, pretreatment time 6 h. [Conclusion] Synergic pretreatment with 60Co y-ray irradiation and alkaline hydrogen peroxide could significantly improve reducing sugar yield in the enzymolysis process of M. sinensis, which provided a new theoretical basis for preparing fuel ethanol with M. sinensis.展开更多
Among the potential non-food energy crops,the sugar-rich C4 grass sweet sorghum and the biomass-rich Miscanthus are increasingly considered as two leading candidates.Here,we outline the biological traits of these ener...Among the potential non-food energy crops,the sugar-rich C4 grass sweet sorghum and the biomass-rich Miscanthus are increasingly considered as two leading candidates.Here,we outline the biological traits of these energy crops for largescale production in China.We also review recent progress on understanding of plant cell wall composition and wall polymer features of both plant species from large populations that affect both biomass enzymatic digestibility and ethanol conversion rates under various pretreatment conditions.We finally propose genetic approaches to enhance biomass production,enzymatic digestibility and sugar-ethanol conversion efficiency of the energy crops.展开更多
On the basis of the taphonomy, osteological anatomy and ontogenetic variation, Zhuchengosaurus maximus Zhao et al., 2007 is considered to be synonymic with Shantungosaurus giganteus Hu, 1973 herein. This paper also de...On the basis of the taphonomy, osteological anatomy and ontogenetic variation, Zhuchengosaurus maximus Zhao et al., 2007 is considered to be synonymic with Shantungosaurus giganteus Hu, 1973 herein. This paper also deals with the life behavior of S. giganteus and the environment in which S. giganteus lived. S. giganteus is considered to be a terrestrial and gregarious herbivorous dinosaur and lived in hills and intervales in warm weather with plentiful rain and flourishing vegetation.展开更多
对1株富产吲哚喹唑啉类生物碱(IQAs)的海绵共附生真菌Aspergillus giganteus MA 46-5的IQAs类成分进行了研究。根据IQAs的结构特征,在TLC、LC-MS和GNPS(global natural products social molecular networking)技术的共同指导下,从大米...对1株富产吲哚喹唑啉类生物碱(IQAs)的海绵共附生真菌Aspergillus giganteus MA 46-5的IQAs类成分进行了研究。根据IQAs的结构特征,在TLC、LC-MS和GNPS(global natural products social molecular networking)技术的共同指导下,从大米培养基的乙酸乙酯部位分离得到10个IQAs类生物碱。通过NMR、HR-ESI-MS、OR和CD等方法并结合文献比对鉴定其分别为:tryptoquivaline(1)、nortryptoquivaline(2)、deoxytryptoquivaline(3)、deoxynortryptoquivaline(4)、aspertoryadin C(5)、aspertoryadin G(6)、quinadoline A(7)、fiscalin E (8)、quinadoline B(9)和prelapatin B(10)。8和10为首次从Aspergillus属中得到,2、4~7为首次从Aspergillus giganteus中分离得到。展开更多
High yielding perennial grasses could integrate bioenergy-livestock operations, thereby, offsetting diversions of cropland to lignocellulosic crops, but research is needed to determine chemical composition and digesti...High yielding perennial grasses could integrate bioenergy-livestock operations, thereby, offsetting diversions of cropland to lignocellulosic crops, but research is needed to determine chemical composition and digestibility of leaf and stem fractions that might affect downstream reside uses. The objective of this study was to compare feedstock quality of leaf and stem tissues of dedicated bioenergy feedstocks: giant miscanthus (Miscanthus × giganteus), giant reed (Arundo donax), and miscane (Saccharum hybrid × Miscanthus spp.) when grown with or without supplemental irrigation on an upland site. Three species were space-planted on a silt loam soil in March 2007 and harvested prior to the first freeze in plant-cane, first ratoon, and second-ratoon crops for three years. Giant miscanthus leaf tissue had greatest acid detergent lignin and cellulose, and lowest concentrations of nitrogen (N) and total nonstructural carbohydrates (TNC) in ratoon crops. Giant reed leaf tissue had greatest concentrations of in vitro digestible dry matter (IVDMD), TNC, and N (P ≤ 0.05). Conversely, miscane stem tissue had greatest concentrations of IVDMD, TNC, hemicellulose, and low dry matter and combustible energy (P ≤ 0.05). Results suggest all species’ residue has positive feedstock attributes for thermochemical bioenergy conversion, and albeit giant miscanthus has very little potential value as fodder. Miscane stem and giant reed leaf tissue have potential value as livestock feed, although giant reed is not currently recommended for planting. Further research is needed on dietary composition, acceptability, voluntary intake, and live weight gain before any of these species are recommended as livestock feed sources.展开更多
High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from...High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from metal-polluted miscanthus waste for efficient energy storage.The synergistic effect of KOH,urea and ammonia solution greatly improve the nitrogen quantity and surface area of the synthesized carbon.Electrodes fabricated with this carbon exhibit the excellent capacitance performance of 340.2 F g^(-1) at 0.5 A g^(-1) and a low combined resistance of 0.116Ω,which are competitive with most of previously reported carbon-based electrodes.In addition,the as-obtained carbon electrode shows a high specific capacitance retention of over 99.6%even after 5000 cycles.Furthermore,the symmetric supercapacitor fabricated using the synthesized carbon achieves a superior energy density of 25.3 Wh kg^(-1)(at 400 W kg^(-1))in 1 mol L^(-1) Na_(2)SO_(4)aqueous solution.This work provides an efficient route to upcycle metal-polluted plant waste for supercapacitor applications.展开更多
Miscanthus grows well in some marginal and contaminated soils, and it has the potential to be used as a biofuel. Copper and cobalt are heavy metals that sometimes are present as contaminants in soils at concentrations...Miscanthus grows well in some marginal and contaminated soils, and it has the potential to be used as a biofuel. Copper and cobalt are heavy metals that sometimes are present as contaminants in soils at concentrations that may impact the safety of products that are harvested. Laboratory research has been conducted with Miscanthus sacchariflorus M. to investigate metal uptake of copper and cobalt because metal concentrations in the harvested parts of miscanthus are important for biofuel applications. The results show that the use of miscanthus for biofuel from soil contaminated by heavy metals depends mainly on the nature of contaminated metals: cobalt was detected only for highest treated concentration of metal and mainly in the roots. The highest concentration of copper was detected in the roots however this metal was detected in stems and leaves of miscanthus as well. Miscanthus biomass harvested from cobalt contaminated soil may be used for energy production because the harvested part accumulated only limited traces of the metal. The experimental results are in reasonable agreement with other results from the literature.展开更多
文摘The effect of the severity of an organosolv treatment of Miscanthus x giganteus on antioxidant capacity of the obtained lignin was studied. Four organosolv lignins extracted with different severity conditions were chosen and tested. Results obtained using the methyl linoleate method have shown a correlation between oxygen uptake index and the combined severity. It was found that lignin extracted at higher severity pre-treatment and with a higher phenolic hydroxyl content, lower aliphatic hydroxyl content, molecular weight and polydispersity has the highest antioxidant capacity.
文摘The US Department of Energy is currently building strategies for the expansion of clean and renewable energy sources, and tall, rapidly-growing grasses such as giant miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax) are two of the many of species that could fill this renewable energy niche. The objective was to compare stalk growth components of giant miscanthus and giant reed, in a low-input system (no irrigation and no fertilizer use) in Arkansas, USA. Due to the potential invasiveness of giant reed, our study was conducted on an upland site to minimize escape. Plant height and dry weight per stalk were measured every week for two consecutive growing seasons in 2012 and 2013. Leaf area index (LAI) was measured every two weeks from May to September in 2012. A significant species × day interaction occurred for plant height and dry weight per stalk, due to the relatively greater height and weight of giant reed compared to giant miscanthus after May. Stalk elongation rate was greater for giant reed than giant miscanthus (1.85 and 1.11 cm day-1, respectively). Leaf area index differed between species, giant reed (10.4 m2 m-2) > giant miscanthus (4.4 m2 m-2). We showed that giant reed produced taller, heavier stalks, and had a greater stalk elongation rate, compared to giant miscanthus. For sustainable bioenergy production from giant reed in Arkansas, further studies should be performed to determine ideal number of harvests per year and associated production cost.
文摘The number and karyotype of Miscanthus sinensis chromosome was researched with root tip squash method. The formula for karyotype is 2n =2x=48 =26m +16Sm +6St and belonged to the type of 2C. The number of Miscanthus sinensis chromosome is 2n=48. The basic number of chromosome is x=24.
基金Supported by National High Technology Research and Development Program of China(863 Program)(2012AA101804)~~
文摘[Objective] This study aimed to investigate the effects of different pretreat- ments on enzymatic saccharification of Miscanthus sinensis and improve reducing sugar yield in the enzymolysis process. [Method] M. sinensis was pretreated with 60Co y-ray irradiation and alkaline hydrogen peroxide, to analyze their effects on re- ducing sugar yield of enzymatic hydrolysis. [Result] After pretreatment with 400 kGy 60Co y-ray irradiation, reducing sugar yield in the enzymolysis process of M sinensis was 76.24 mg/g; after synergic pretreatment with 400 kGy 60Co y-ray irradiation and alkaline hydrogen peroxide, reducing sugar yield in the enzymolysis process of M. sinensis was 505.08 mg/g, which was improved by 5.6 times compared to that in pretreatment with 400 kGy 60Co y-ray irradiation. Based on process optimization, the optimal hydrolysis conditions were obtained: pretreatment temperature 30 ℃, NaOH concentration 1.2%, hydrogen peroxide concentration 2%, pretreatment time 6 h. [Conclusion] Synergic pretreatment with 60Co y-ray irradiation and alkaline hydrogen peroxide could significantly improve reducing sugar yield in the enzymolysis process of M. sinensis, which provided a new theoretical basis for preparing fuel ethanol with M. sinensis.
基金supported by grants from the Fundamental Research Funds for the Central Universities Project , China (2013QC042)the Fundamental Research Funds for the 111 Project of Ministry of Education of China (B08032)the Starting Foundation for Changjiang Scholars Program of Ministry of Education of China (52204-14004)
文摘Among the potential non-food energy crops,the sugar-rich C4 grass sweet sorghum and the biomass-rich Miscanthus are increasingly considered as two leading candidates.Here,we outline the biological traits of these energy crops for largescale production in China.We also review recent progress on understanding of plant cell wall composition and wall polymer features of both plant species from large populations that affect both biomass enzymatic digestibility and ethanol conversion rates under various pretreatment conditions.We finally propose genetic approaches to enhance biomass production,enzymatic digestibility and sugar-ethanol conversion efficiency of the energy crops.
文摘On the basis of the taphonomy, osteological anatomy and ontogenetic variation, Zhuchengosaurus maximus Zhao et al., 2007 is considered to be synonymic with Shantungosaurus giganteus Hu, 1973 herein. This paper also deals with the life behavior of S. giganteus and the environment in which S. giganteus lived. S. giganteus is considered to be a terrestrial and gregarious herbivorous dinosaur and lived in hills and intervales in warm weather with plentiful rain and flourishing vegetation.
文摘High yielding perennial grasses could integrate bioenergy-livestock operations, thereby, offsetting diversions of cropland to lignocellulosic crops, but research is needed to determine chemical composition and digestibility of leaf and stem fractions that might affect downstream reside uses. The objective of this study was to compare feedstock quality of leaf and stem tissues of dedicated bioenergy feedstocks: giant miscanthus (Miscanthus × giganteus), giant reed (Arundo donax), and miscane (Saccharum hybrid × Miscanthus spp.) when grown with or without supplemental irrigation on an upland site. Three species were space-planted on a silt loam soil in March 2007 and harvested prior to the first freeze in plant-cane, first ratoon, and second-ratoon crops for three years. Giant miscanthus leaf tissue had greatest acid detergent lignin and cellulose, and lowest concentrations of nitrogen (N) and total nonstructural carbohydrates (TNC) in ratoon crops. Giant reed leaf tissue had greatest concentrations of in vitro digestible dry matter (IVDMD), TNC, and N (P ≤ 0.05). Conversely, miscane stem tissue had greatest concentrations of IVDMD, TNC, hemicellulose, and low dry matter and combustible energy (P ≤ 0.05). Results suggest all species’ residue has positive feedstock attributes for thermochemical bioenergy conversion, and albeit giant miscanthus has very little potential value as fodder. Miscane stem and giant reed leaf tissue have potential value as livestock feed, although giant reed is not currently recommended for planting. Further research is needed on dietary composition, acceptability, voluntary intake, and live weight gain before any of these species are recommended as livestock feed sources.
基金financial supports from KeyArea Research and Development Program of Guangdong Province(2019B110209003)Guangdong Basic and Applied Basic Research Foundation(2019B1515120058,2020A1515011149)+3 种基金National Key R&D Program of China(2018YFD0800700)National Ten Thousand Talent Plan,National Natural Science Foundation of China(21776324)the Fundamental Research Funds for the Central Universities(19lgzd25)Hundred Talent Plan(201602)from Sun Yatsen University。
文摘High-value reclamation of metal-polluted plants involved in phytoremediation is a big challenge.In this study,nitrogen-doped nanoporous carbon with large specific area of 2359.1 m^(2)g^(-1) is facilely fabricated from metal-polluted miscanthus waste for efficient energy storage.The synergistic effect of KOH,urea and ammonia solution greatly improve the nitrogen quantity and surface area of the synthesized carbon.Electrodes fabricated with this carbon exhibit the excellent capacitance performance of 340.2 F g^(-1) at 0.5 A g^(-1) and a low combined resistance of 0.116Ω,which are competitive with most of previously reported carbon-based electrodes.In addition,the as-obtained carbon electrode shows a high specific capacitance retention of over 99.6%even after 5000 cycles.Furthermore,the symmetric supercapacitor fabricated using the synthesized carbon achieves a superior energy density of 25.3 Wh kg^(-1)(at 400 W kg^(-1))in 1 mol L^(-1) Na_(2)SO_(4)aqueous solution.This work provides an efficient route to upcycle metal-polluted plant waste for supercapacitor applications.
文摘Miscanthus grows well in some marginal and contaminated soils, and it has the potential to be used as a biofuel. Copper and cobalt are heavy metals that sometimes are present as contaminants in soils at concentrations that may impact the safety of products that are harvested. Laboratory research has been conducted with Miscanthus sacchariflorus M. to investigate metal uptake of copper and cobalt because metal concentrations in the harvested parts of miscanthus are important for biofuel applications. The results show that the use of miscanthus for biofuel from soil contaminated by heavy metals depends mainly on the nature of contaminated metals: cobalt was detected only for highest treated concentration of metal and mainly in the roots. The highest concentration of copper was detected in the roots however this metal was detected in stems and leaves of miscanthus as well. Miscanthus biomass harvested from cobalt contaminated soil may be used for energy production because the harvested part accumulated only limited traces of the metal. The experimental results are in reasonable agreement with other results from the literature.