High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation.Polar motion is affected by a variety of excitation factors,and nonlinear prediction methods are more...High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation.Polar motion is affected by a variety of excitation factors,and nonlinear prediction methods are more suitable for polar motion prediction.In order to explore the effect of deep learning in polar motion prediction.This paper proposes a combined model based on empirical wavelet transform(EWT),Convolutional Neural Networks(CNN)and Long Short Term Memory(LSTM).By training and forecasting EOP 20C04 data,the effectiveness of the algorithm is verified,and the performance of two forecasting strategies in deep learning for polar motion prediction is explored.The results indicate that recursive multi-step prediction performs better than direct multi-step prediction for short-term forecasts within 15 days,while direct multi-step prediction is more suitable for medium and long-term forecasts.In the 365 days forecast,the mean absolute error of EWT-CNN-LSTM in the X direction and Y direction is 18.25 mas and 15.78 mas,respectively,which is 23.5% and 16.2% higher than the accuracy of Bulletin A.The results show that the algorithm has a good effect in medium and long term polar motion prediction.展开更多
The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(...The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(as a corrector) is investigated in this paper. First, a ground-based telescope with 2.5 m aperture and 3.5 deg field of view is described. The telescope is under construction, and it is expected to be finished in 2023. Second, the hexapod platform with flexure hinges utilized to adjust the primary focus unit is proposed, which is applied as a corrector.Then, the inverse kinematics of the platform is established and an open-loop control system is built based on it.Finally, the cryogenic performance test for the hexapod platform is performed. The experimental results show that the resolution and repeatability of the translation for the hexapod platform can be achieved at the micrometer level.The resolution and repeatability of the rotation can be achieved at the arc-second level. Therefore, the cryogenic performance of the hexapod platform can meet the optical imaging requirements of the wide-field ground-based telescope. The kinematic analysis and cryogenic performance tests in the paper provide a technical reference for the precise alignment of the primary focus unit and the primary mirror, which can improve the imaging quality of the telescope.展开更多
For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuf...For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuffer and GPU parallel technology.UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA.After aligning the dual-polarization data,multiple 128M subband data are packaged into PSRDADA baseband data or multi-channel coherent dispersion filterbank data,and multiple subband filterbank data can be spliced into wideband data after time alignment.We used the Nanshan 26 m radio telescope with the L-band receiver at964~1732 MHz to observe multiple pulsars.Finally,we processed the data using DSPSR software,and the results showed that each subband could correctly fold out the pulse profile,and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.展开更多
The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a com...The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.展开更多
Leighton Chajnantor Telescope(LCT), i.e., the former Caltech Submillimeter Observatory telescope, will be refurbished at the new site in Chajnantor Plateau, Chile in 2023. The environment of LCT will change significan...Leighton Chajnantor Telescope(LCT), i.e., the former Caltech Submillimeter Observatory telescope, will be refurbished at the new site in Chajnantor Plateau, Chile in 2023. The environment of LCT will change significantly after its relocation, and the telescope will be exposed to large wind disturbances directly because its enclosure will be completely open during observation. The wind disturbance is expected to be a challenge for LCT's pointing control since the existing control method cannot reject this disturbance very well. Therefore, it is very necessary to develop a new pointing control method with good capability of disturbance rejection. In this research, a disturbance observer—based composite position controller(DOB-CPC) is designed, in which an H∞feedback controller is employed to compress the disturbance, and a feedforward linear quadratic regulator is employed to compensate the disturbance precisely based on the estimated disturbance signal. Moreover, a controller switching policy is adopted, which applies the proportional controller to the transient process to achieve a quick response and applies the DOB-CPC to the steady state to achieve a small position error. Numerical experiments are conducted to verify the good performance of the proposed pointing controller(i.e., DOB-CPC) for rejecting the disturbance acting on LCT.展开更多
The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receiv...The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receivers and spectrometer during five and a half years of on-orbit operation.The CI,O_(2),H_(2)O,and^(13)CO spectra taken toward all observed Galactic sources were analyzed.The present results are based on spectra with a total integration time of up to 2.72×10~4hr(■10~8s).The noise in the spectra is generally consistent with that expected from the radiometer equation,without any sign of approaching a noise floor.This noise performance reflects the extremely stable performance of the passively cooled front end as well as other relevant components in the SWAS instrument throughout its mission lifetime.展开更多
Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of t...Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.展开更多
Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional meth...Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional methods of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome.Consequently,there is a pressing need for improved methods to efficiently extract them.This study explores the potential of pre-trained Large Language Models(LLMs)to perform astronomical knowledge entity extraction(KEE)task from astrophysical journal articles using prompts.We propose a prompting strategy called PromptKEE,which includes five prompt elements,and design eight combination prompts based on them.We select four representative LLMs(Llama-2-70B,GPT-3.5,GPT-4,and Claude 2)and attempt to extract the most typical astronomical knowledge entities,celestial object identifiers and telescope names,from astronomical journal articles using these eight combination prompts.To accommodate their token limitations,we construct two data sets:the full texts and paragraph collections of 30 articles.Leveraging the eight prompts,we test on full texts with GPT-4and Claude 2,on paragraph collections with all LLMs.The experimental results demonstrate that pre-trained LLMs show significant potential in performing KEE tasks,but their performance varies on the two data sets.Furthermore,we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs.Finally,compared to other methods of KEE,LLMs exhibit strong competitiveness in multiple aspects.展开更多
To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRD...To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRDP can perform operations such as baseband data unpacking,channel separation,coherent dedispersion,Stokes detection,phase and folding period prediction,and folding integration in GPU clusters.We tested the algorithm using the J0437-4715 pulsar baseband data generated by the CASPSR and Medusa backends of the Parkes,and the J0332+5434 pulsar baseband data generated by the self-developed backend of the Nan Shan Radio Telescope.We obtained the pulse profiles of each baseband data.Through experimental analysis,we have found that the pulse profiles generated by the PSRDP algorithm in this paper are essentially consistent with the processing results of Digital Signal Processing Software for Pulsar Astronomy(DSPSR),which verified the effectiveness of the PSRDP algorithm.Furthermore,using the same baseband data,we compared the processing speed of PSRDP with DSPSR,and the results showed that PSRDP was not slower than DSPSR in terms of speed.The theoretical and technical experience gained from the PSRDP algorithm research in this article lays a technical foundation for the real-time processing of QTT(Qi Tai radio Telescope)ultra-wide bandwidth pulsar baseband data.展开更多
Medical works and histories provide a general understanding of foreign influence on Chinese medicine,but a variety of miscellaneous texts give a deeper understanding of the details of this interaction.Trade manuals,no...Medical works and histories provide a general understanding of foreign influence on Chinese medicine,but a variety of miscellaneous texts give a deeper understanding of the details of this interaction.Trade manuals,notes on foreign interactions,archeological discoveries,and religious works all fill in important details on the incorporation of foreign medicines and ideas into Chinese medicine.展开更多
930610 The retrospective study on the mortalityof 0-4 years old children in five monitoring vil-lages of Baoying County,Jiangsu Province.JI Ji-ayu(季家鈺).Women & Children Health Center,Baoying County,Baoying,2258...930610 The retrospective study on the mortalityof 0-4 years old children in five monitoring vil-lages of Baoying County,Jiangsu Province.JI Ji-ayu(季家鈺).Women & Children Health Center,Baoying County,Baoying,225800.Chin RuralHealth Serv Administr 1993;13(3):44-45.According to the monitoring plan laid down bythe Department of Women and Children Affairs,Ministry of Public Health,a basal survey on theacute respiratory infection of the children in thewhole county was engaged.The condition of theretrospective study of the mortality of 0-4 yearsold children in 1990 of 5 monitoring villages(Sishui,Zhangshidang,Wangzhi,Chengjiao andXiaji)was reported and analyzed.There were2227 neonatal live births in 1990.The mortalityof the infants in the 5 monitoring villages was展开更多
920754 Injurious effects of TNF-α on viscer-al organs of germ-free rats: a preliminaryreport. SHENG Zhiyong(盛志勇), et al.Postgraduate Med Coll, PLA, 30th Hosp, PLA.Med J Chin PLA 1992; 17(3): 168-170. TNF might be ...920754 Injurious effects of TNF-α on viscer-al organs of germ-free rats: a preliminaryreport. SHENG Zhiyong(盛志勇), et al.Postgraduate Med Coll, PLA, 30th Hosp, PLA.Med J Chin PLA 1992; 17(3): 168-170. TNF might be one of the most importantcytokines in the process of sepsis. The presentstudy is to evaluate its direct effects on differentorgans. For this purpose, germ-free rats展开更多
970395 Screening and genetic analysis of fragile Xsyndrome in Tongling Anhui province of China, SHENYan(沈岩), et al. Basic Med Sci Instit, CAMS &PUMC, Beijing, 100005. Natl Med J China 1997; 77(4): 260-262 Object...970395 Screening and genetic analysis of fragile Xsyndrome in Tongling Anhui province of China, SHENYan(沈岩), et al. Basic Med Sci Instit, CAMS &PUMC, Beijing, 100005. Natl Med J China 1997; 77(4): 260-262 Objective: To investigate the prevalence of fragile展开更多
Leighton Chajnantor Telescope(LCT)will be moved from the summit of Maunakea,Hawaii to Chajnantor Plateau,Chile and be refurbished there.Strong wind disturbance at the new site will bring great challenges to the servo ...Leighton Chajnantor Telescope(LCT)will be moved from the summit of Maunakea,Hawaii to Chajnantor Plateau,Chile and be refurbished there.Strong wind disturbance at the new site will bring great challenges to the servo control of LCT.It is necessary and important to develop a simulation platform that behaves as close as possible to the real telescope for testing the performance of the designed servo controller.In this paper,a collaborative simulation platform of LCT based on Adams and Matlab/Simulink is constructed.On this platform,the mechanical structure model of LCT can be integrated with its control system model such that a collaborative simulation of the mechanical structure and the control system of LCT can be conducted.The mechanical structure model of LCT,which contains both rigid body models(i.e.,the mount)and flexible body models(i.e.,the primary reflector),is developed by using Adams.The servo system model and the wind disturbance model are constructed by using Matlab/Simulink.By conducting collaborative simulation,the performances of the servo controller based on the rigid body model and the rigid-flexible coupling model of LCT are compared.The comparison shows that the controller designed based on the rigid body model does not perform well when it is employed to control the rigid-flexible coupling model of LCT.However,by readjusting parameters of the servo controller,its performance can be further improved when applied to the rigid-flexible coupling model.Therefore,an LCT model of integrated mechanical structure and control systems is very helpful for analyzing its performance more accurately and designing a better servo controller.展开更多
Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beam...Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beamoffset observation results,we obtain polarization profiles of 682 pulsars from observations by the Five-hundredmeter Aperture Spherical radio Telescope(FAST)duringthe Galactic Plane Pulsar Snapshot survey and other normal FAST projects.Among them,polarization profiles of about 460 pulsars are observed for the first time.The profiles exhibit diverse features.Some pulsars have a polarization position angle curve with a good S-shaped swing,some with orthogonal modes;some have components with highly linearly polarized components or strong circularly polarized components;some have a very wide profile,coming from an aligned rotator,and some have an interpulse from a perpendicular rotator;some wide profiles are caused by interstellar scattering.We derive geometric parameters for 190 pulsars from the S-shaped position angle curves or with orthogonal modes.We find that the linear and circular polarization or the widths of pulse profiles have various frequency dependencies.Pulsars with a large fraction of linear polarization are more likely to have a large Edot.展开更多
Aiming at the subband division of ultra-wide bandwidth low-frequency(UWL)signal(frequency coverage range:704–4032 MHz)of the Xinjiang 110 m QiTai radio Telescope(QTT),a scheme of ultra-wide bandwidth signal is design...Aiming at the subband division of ultra-wide bandwidth low-frequency(UWL)signal(frequency coverage range:704–4032 MHz)of the Xinjiang 110 m QiTai radio Telescope(QTT),a scheme of ultra-wide bandwidth signal is designed.First,we analyze the effect of different window functions such as the Hanning window,Hamming window,and Kaiser window on the performance of finite impulse response(FIR)digital filters,and implement a critical sampling polyphase filter bank(CS-PFB)based on the Hamming window FIR digital filter.Second,we generate 3328 MHz simulation data of ultra-wideband pulsar baseband in the frequency range of 704–4032 MHz using the ultra-wide bandwidth pulsar baseband data generation algorithm based on the 400 MHz bandwidth pulsar baseband data obtained from Parkes CASPSR observations.Third,we obtain 26 subbands of 128 MHz based on CS-PFB and the simulation data,and the pulse profile of each subband by coherent dispersion,integration,and folding.Finally,the phase of each subband pulse profile is aligned by non-coherent dedispersion,and to generate a broadband pulse profile,which is basically the same as the pulse profile obtained from the original data using DSPSR.The experimental results show that the scheme for the QTT UWL receiving system is feasible,and the proposed channel algorithm in this paper is effective.展开更多
We present the estimation of solar observation with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).For both the quiet Sun and the Sun with radio bursts,when pointing directly to the Sun,the total powe...We present the estimation of solar observation with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).For both the quiet Sun and the Sun with radio bursts,when pointing directly to the Sun,the total power received by FAST would be out of the safe operational range of the signal chain,even resulting in damage to the receiver.As a conclusion,the Sun should be kept at least~2°away from the main beam during observations at~1.25 GHz.The separation for lower frequency should be larger.For simplicity,the angular separation between the FAST beam and the Sun is suggested to be~5°for observations at 200 MHz or higher bands.展开更多
Dual-reflector antennas are widely used in astronomical observations and satellite communication.Structural deformations of the reflectors for radio telescopes are inevitable in outside working conditions due to exter...Dual-reflector antennas are widely used in astronomical observations and satellite communication.Structural deformations of the reflectors for radio telescopes are inevitable in outside working conditions due to exterior environment loads,which will cause distortion in the surface of the primary reflector and displacement of the subreflector,then lead to gain degradation and misalignment.In this paper,the influence and correction of misalignment in a dual-reflector antenna have been studied.From the perspective of wavefront aberration,a method is proposed to correct the wavefront primary aberration by adjusting the subreflector position.The characteristics of wavefront errors caused by structural deformation of the reflector have been analyzed,and relationships between the position motions of the subreflector and the Seidel wavefront aberrations are derived.The adjustment quantities of the subreflector are also derived.The results show the appropriate positional change of the subreflector in the lateral and axial directions can effectively correct the effects of the tilt and defocus in the primary aberrations caused by antenna structural deformations.展开更多
In this paper,we report a real-time Fast Radio Burst(FRB)searching system that has been successfully implemented with the 19 beam receiver of the Five-hundred-meter Aperture Spherical radio Telescope(FAST).The relativ...In this paper,we report a real-time Fast Radio Burst(FRB)searching system that has been successfully implemented with the 19 beam receiver of the Five-hundred-meter Aperture Spherical radio Telescope(FAST).The relatively small field of view of FAST makes the search for new FRBs challenging,but its high sensitivity significantly improves the accuracy of FRB localization and enables the detection of high-precision neutral hydrogen absorption lines generated by FRBs.Our goal is to develop an FRB searching system capable of realtime detection of FRBs that allows high-time resolution spectro-temporal studies among the repeated bursts,as well as detailed investigations of these bursts and exploration of FRB progenitor models.The data from each beam of the 19-beam receiver are fed into a high-performance computing node server,which performs real-time searches for pulses with a wide dispersion measure(DM)range of 20–10,000 pc cm^(-3) with step efficiency of 25%in real time.Then,the head node server aggregates all the candidate signals from each beam within a given time,determining their authenticity based on various criteria,including arrival time,pulse width,signal-to-noise ratio and coincidence patterns among the 19 beams.Within the 1.05–1.45 GHz operating bandwidth of the FAST 19beam receiver,the system achieves a frequency resolution of 122.07 kHz and a time resolution of 270.336μs.Subsequently,our team detected a series of bursts with a DM of 566 on 2019 August 30 confirming them as FRB121102.The FRB searching system enables the 19-beam receiver of FAST to detect repeated/one-off pulses/bursts in real time.展开更多
Location-based cross-matching is a preprocessing step in astronomy that aims to identify records belonging to the same celestial body based on the angular distance formula. The traditional approach involves comparing ...Location-based cross-matching is a preprocessing step in astronomy that aims to identify records belonging to the same celestial body based on the angular distance formula. The traditional approach involves comparing each record in one catalog with every record in the other catalog, resulting in a one-to-one comparison with high computational complexity. To reduce the computational time, index partitioning methods are used to divide the sky into regions and perform local cross-matching. In addition, cross-matching algorithms have been adopted on highperformance architectures to improve their efficiency. But the index partitioning methods and computation architectures only increase the degree of parallelism, and cannot decrease the complexity of pairwise-based crossmatching algorithm itself. A better algorithm is needed to further improve the performance of cross-matching algorithm. In this paper, we propose a 3d-tree-based cross-matching algorithm that converts the angular distance formula into an equivalent 3dEuclidean distance and uses 3d-tree method to reduce the overall computational complexity and to avoid boundary issues. Furthermore, we demonstrate the superiority of the 3d-tree approach over the 2d-tree method and implement it using a multi-threading technique during both the construction and querying phases. We have experimentally evaluated the proposed 3d-tree cross-matching algorithm using publicly available catalog data. The results show that our algorithm applied on two 32-core CPUs achieves equivalent performance than previous experiments conducted on a six-node CPU-GPU cluster.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under grant No.42304044the Natural Science Foundation of Henan,China under grant No.222300420385。
文摘High-precision polar motion prediction is of great significance for deep space exploration and satellite navigation.Polar motion is affected by a variety of excitation factors,and nonlinear prediction methods are more suitable for polar motion prediction.In order to explore the effect of deep learning in polar motion prediction.This paper proposes a combined model based on empirical wavelet transform(EWT),Convolutional Neural Networks(CNN)and Long Short Term Memory(LSTM).By training and forecasting EOP 20C04 data,the effectiveness of the algorithm is verified,and the performance of two forecasting strategies in deep learning for polar motion prediction is explored.The results indicate that recursive multi-step prediction performs better than direct multi-step prediction for short-term forecasts within 15 days,while direct multi-step prediction is more suitable for medium and long-term forecasts.In the 365 days forecast,the mean absolute error of EWT-CNN-LSTM in the X direction and Y direction is 18.25 mas and 15.78 mas,respectively,which is 23.5% and 16.2% higher than the accuracy of Bulletin A.The results show that the algorithm has a good effect in medium and long term polar motion prediction.
基金supported by the Jilin Scientific and Technological Development Program (No.20220204116YY)the National Natural Science Foundation of China(No.62235018 and No.12133009)。
文摘The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(as a corrector) is investigated in this paper. First, a ground-based telescope with 2.5 m aperture and 3.5 deg field of view is described. The telescope is under construction, and it is expected to be finished in 2023. Second, the hexapod platform with flexure hinges utilized to adjust the primary focus unit is proposed, which is applied as a corrector.Then, the inverse kinematics of the platform is established and an open-loop control system is built based on it.Finally, the cryogenic performance test for the hexapod platform is performed. The experimental results show that the resolution and repeatability of the translation for the hexapod platform can be achieved at the micrometer level.The resolution and repeatability of the rotation can be achieved at the arc-second level. Therefore, the cryogenic performance of the hexapod platform can meet the optical imaging requirements of the wide-field ground-based telescope. The kinematic analysis and cryogenic performance tests in the paper provide a technical reference for the precise alignment of the primary focus unit and the primary mirror, which can improve the imaging quality of the telescope.
基金supported by the National Key R&D Program of China Nos.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077)+4 种基金the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095 and2023TSYCCX0112)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘For real-time processing of ultra-wide bandwidth low-frequency pulsar baseband data,we designed and implemented an ultra-wide bandwidth low-frequency pulsar data processing pipeline(UWLPIPE)based on the shared ringbuffer and GPU parallel technology.UWLPIPE runs on the GPU cluster and can simultaneously receive multiple 128 MHz dual-polarization VDIF data packets preprocessed by the front-end FPGA.After aligning the dual-polarization data,multiple 128M subband data are packaged into PSRDADA baseband data or multi-channel coherent dispersion filterbank data,and multiple subband filterbank data can be spliced into wideband data after time alignment.We used the Nanshan 26 m radio telescope with the L-band receiver at964~1732 MHz to observe multiple pulsars.Finally,we processed the data using DSPSR software,and the results showed that each subband could correctly fold out the pulse profile,and the wideband pulse profile accumulated by multiple subbands could be correctly aligned.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(grant No.XDB0550400)the Key Research Program of Frontier Sciences(grant No.ZDBS-LY-7014)of Chinese Academy of Sciences+1 种基金the National Natural Science Foundation of China(NSFC,Grant Nos.12373053 and 12321003)the Natural Science Foundation of Jiangsu Province(grant No.BK20221562)。
文摘The occurrence of the first significant digits from real world sources is usually not equally distributed,but is consistent with a logarithmic distribution instead,known as Benford’s law.In this work,we perform a comprehensive investigation on the first digit distributions of the duration,fluence,and energy flux of gamma-ray bursts (GRBs) for the first time.For a complete GRB sample detected by the Fermi satellite,we find that the first digits of the duration and fluence adhere to Benford’s law.However,the energy flux shows a significant departure from this law,which may be due to the fact that a considerable part of the energy flux measurements is restricted by lack of spectral information.Based on the conventional duration classification scheme,we also check if the durations and fluences of long and short GRBs (with duration T_(90)>2 s and T_(90)≤2 s,respectively) obey Benford’s law.We find that the fluences of both long and short GRBs still agree with the Benford distribution,but their durations do not follow Benford’s law.Our results hint that the long–short GRB classification scheme does not directly represent the intrinsic physical classification scheme.
文摘Leighton Chajnantor Telescope(LCT), i.e., the former Caltech Submillimeter Observatory telescope, will be refurbished at the new site in Chajnantor Plateau, Chile in 2023. The environment of LCT will change significantly after its relocation, and the telescope will be exposed to large wind disturbances directly because its enclosure will be completely open during observation. The wind disturbance is expected to be a challenge for LCT's pointing control since the existing control method cannot reject this disturbance very well. Therefore, it is very necessary to develop a new pointing control method with good capability of disturbance rejection. In this research, a disturbance observer—based composite position controller(DOB-CPC) is designed, in which an H∞feedback controller is employed to compress the disturbance, and a feedforward linear quadratic regulator is employed to compensate the disturbance precisely based on the estimated disturbance signal. Moreover, a controller switching policy is adopted, which applies the proportional controller to the transient process to achieve a quick response and applies the DOB-CPC to the steady state to achieve a small position error. Numerical experiments are conducted to verify the good performance of the proposed pointing controller(i.e., DOB-CPC) for rejecting the disturbance acting on LCT.
文摘The Submillimeter Wave Astronomy Satellite(SWAS)was the first space telescope capable of high spectral resolution observations of terahertz spectral lines.We have investigated the integration ability of its two receivers and spectrometer during five and a half years of on-orbit operation.The CI,O_(2),H_(2)O,and^(13)CO spectra taken toward all observed Galactic sources were analyzed.The present results are based on spectra with a total integration time of up to 2.72×10~4hr(■10~8s).The noise in the spectra is generally consistent with that expected from the radiometer equation,without any sign of approaching a noise floor.This noise performance reflects the extremely stable performance of the passively cooled front end as well as other relevant components in the SWAS instrument throughout its mission lifetime.
基金supported by the National Key R&D Program of China (Nos. 2022YFF0711502 and 2021YFC2203502)the National Natural Science Foundation of China (NSFC)(12173077 and 12003062)+6 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region (2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (grant No. PTYQ2022YZZD01)China National Astronomical Data Center (NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China (MOF)and administrated by the Chinese Academy of Sciences (CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01A360)supported by Astronomical Big Data Joint Research Center,co-founded by National Astronomical Observatories,Chinese Academy of Sciences。
文摘Cross-matching is a key technique to achieve fusion of multi-band astronomical catalogs. Due to different equipment such as various astronomical telescopes, the existence of measurement errors, and proper motions of the celestial bodies, the same celestial object will have different positions in different catalogs, making it difficult to integrate multi-band or full-band astronomical data. In this study, we propose an online cross-matching method based on pseudo-spherical indexing techniques and develop a service combining with high performance computing system(Taurus) to improve cross-matching efficiency, which is designed for the Data Center of Xinjiang Astronomical Observatory. Specifically, we use Quad Tree Cube to divide the spherical blocks of the celestial object and map the 2D space composed of R.A. and decl. to 1D space and achieve correspondence between real celestial objects and spherical patches. Finally, we verify the performance of the service using Gaia 3 and PPMXL catalogs. Meanwhile, we send the matching results to VO tools-Topcat and Aladin respectively to get visual results. The experimental results show that the service effectively solves the speed bottleneck problem of crossmatching caused by frequent I/O, and significantly improves the retrieval and matching speed of massive astronomical data.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.12273077,72101068,12373110,and 12103070)National Key Research and Development Program of China under grants(2022YFF0712400,2022YFF0711500)+2 种基金the 14th Five-year Informatization Plan of Chinese Academy of Sciences(CAS-WX2021SF-0204)supported by Astronomical Big Data Joint Research Centerco-founded by National Astronomical Observatories,Chinese Academy of Sciences and Alibaba Cloud。
文摘Astronomical knowledge entities,such as celestial object identifiers,are crucial for literature retrieval and knowledge graph construction,and other research and applications in the field of astronomy.Traditional methods of extracting knowledge entities from texts face numerous challenging obstacles that are difficult to overcome.Consequently,there is a pressing need for improved methods to efficiently extract them.This study explores the potential of pre-trained Large Language Models(LLMs)to perform astronomical knowledge entity extraction(KEE)task from astrophysical journal articles using prompts.We propose a prompting strategy called PromptKEE,which includes five prompt elements,and design eight combination prompts based on them.We select four representative LLMs(Llama-2-70B,GPT-3.5,GPT-4,and Claude 2)and attempt to extract the most typical astronomical knowledge entities,celestial object identifiers and telescope names,from astronomical journal articles using these eight combination prompts.To accommodate their token limitations,we construct two data sets:the full texts and paragraph collections of 30 articles.Leveraging the eight prompts,we test on full texts with GPT-4and Claude 2,on paragraph collections with all LLMs.The experimental results demonstrate that pre-trained LLMs show significant potential in performing KEE tasks,but their performance varies on the two data sets.Furthermore,we analyze some important factors that influence the performance of LLMs in entity extraction and provide insights for future KEE tasks in astrophysical articles using LLMs.Finally,compared to other methods of KEE,LLMs exhibit strong competitiveness in multiple aspects.
基金supported by the National Key R&D Program of China Nos.2021YFC2203502 and 2022YFF0711502the National Natural Science Foundation of China(NSFC)(12173077 and 12003062)+5 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘To address the problem of real-time processing of ultra-wide bandwidth pulsar baseband data,we designed and implemented a pulsar baseband data processing algorithm(PSRDP)based on GPU parallel computing technology.PSRDP can perform operations such as baseband data unpacking,channel separation,coherent dedispersion,Stokes detection,phase and folding period prediction,and folding integration in GPU clusters.We tested the algorithm using the J0437-4715 pulsar baseband data generated by the CASPSR and Medusa backends of the Parkes,and the J0332+5434 pulsar baseband data generated by the self-developed backend of the Nan Shan Radio Telescope.We obtained the pulse profiles of each baseband data.Through experimental analysis,we have found that the pulse profiles generated by the PSRDP algorithm in this paper are essentially consistent with the processing results of Digital Signal Processing Software for Pulsar Astronomy(DSPSR),which verified the effectiveness of the PSRDP algorithm.Furthermore,using the same baseband data,we compared the processing speed of PSRDP with DSPSR,and the results showed that PSRDP was not slower than DSPSR in terms of speed.The theoretical and technical experience gained from the PSRDP algorithm research in this article lays a technical foundation for the real-time processing of QTT(Qi Tai radio Telescope)ultra-wide bandwidth pulsar baseband data.
文摘Medical works and histories provide a general understanding of foreign influence on Chinese medicine,but a variety of miscellaneous texts give a deeper understanding of the details of this interaction.Trade manuals,notes on foreign interactions,archeological discoveries,and religious works all fill in important details on the incorporation of foreign medicines and ideas into Chinese medicine.
文摘930610 The retrospective study on the mortalityof 0-4 years old children in five monitoring vil-lages of Baoying County,Jiangsu Province.JI Ji-ayu(季家鈺).Women & Children Health Center,Baoying County,Baoying,225800.Chin RuralHealth Serv Administr 1993;13(3):44-45.According to the monitoring plan laid down bythe Department of Women and Children Affairs,Ministry of Public Health,a basal survey on theacute respiratory infection of the children in thewhole county was engaged.The condition of theretrospective study of the mortality of 0-4 yearsold children in 1990 of 5 monitoring villages(Sishui,Zhangshidang,Wangzhi,Chengjiao andXiaji)was reported and analyzed.There were2227 neonatal live births in 1990.The mortalityof the infants in the 5 monitoring villages was
文摘920754 Injurious effects of TNF-α on viscer-al organs of germ-free rats: a preliminaryreport. SHENG Zhiyong(盛志勇), et al.Postgraduate Med Coll, PLA, 30th Hosp, PLA.Med J Chin PLA 1992; 17(3): 168-170. TNF might be one of the most importantcytokines in the process of sepsis. The presentstudy is to evaluate its direct effects on differentorgans. For this purpose, germ-free rats
文摘970395 Screening and genetic analysis of fragile Xsyndrome in Tongling Anhui province of China, SHENYan(沈岩), et al. Basic Med Sci Instit, CAMS &PUMC, Beijing, 100005. Natl Med J China 1997; 77(4): 260-262 Objective: To investigate the prevalence of fragile
文摘Leighton Chajnantor Telescope(LCT)will be moved from the summit of Maunakea,Hawaii to Chajnantor Plateau,Chile and be refurbished there.Strong wind disturbance at the new site will bring great challenges to the servo control of LCT.It is necessary and important to develop a simulation platform that behaves as close as possible to the real telescope for testing the performance of the designed servo controller.In this paper,a collaborative simulation platform of LCT based on Adams and Matlab/Simulink is constructed.On this platform,the mechanical structure model of LCT can be integrated with its control system model such that a collaborative simulation of the mechanical structure and the control system of LCT can be conducted.The mechanical structure model of LCT,which contains both rigid body models(i.e.,the mount)and flexible body models(i.e.,the primary reflector),is developed by using Adams.The servo system model and the wind disturbance model are constructed by using Matlab/Simulink.By conducting collaborative simulation,the performances of the servo controller based on the rigid body model and the rigid-flexible coupling model of LCT are compared.The comparison shows that the controller designed based on the rigid body model does not perform well when it is employed to control the rigid-flexible coupling model of LCT.However,by readjusting parameters of the servo controller,its performance can be further improved when applied to the rigid-flexible coupling model.Therefore,an LCT model of integrated mechanical structure and control systems is very helpful for analyzing its performance more accurately and designing a better servo controller.
基金supported by the National Natural Science Foundation of China(NSFC,grant Nos.11988101 and 11833009),supported by the National Natural Science Foundation of China(NSFC,grant No.U2031115)supported by the National Key R&D Program of China(No.2021YFA1600401 and 2021YFA1600400)+1 种基金National Natural Science Foundation of China(NSFC,grant Nos.11873058 and 12133004)the National SKA program of China(No.2020SKA0120200)。
文摘Pulsar polarization profiles form a very basic database for understanding the emission processes in a pulsar magnetosphere.After careful polarization calibration of the 19-beam L-band receiver and verification of beamoffset observation results,we obtain polarization profiles of 682 pulsars from observations by the Five-hundredmeter Aperture Spherical radio Telescope(FAST)duringthe Galactic Plane Pulsar Snapshot survey and other normal FAST projects.Among them,polarization profiles of about 460 pulsars are observed for the first time.The profiles exhibit diverse features.Some pulsars have a polarization position angle curve with a good S-shaped swing,some with orthogonal modes;some have components with highly linearly polarized components or strong circularly polarized components;some have a very wide profile,coming from an aligned rotator,and some have an interpulse from a perpendicular rotator;some wide profiles are caused by interstellar scattering.We derive geometric parameters for 190 pulsars from the S-shaped position angle curves or with orthogonal modes.We find that the linear and circular polarization or the widths of pulse profiles have various frequency dependencies.Pulsars with a large fraction of linear polarization are more likely to have a large Edot.
基金supported by the National Key R&D Program of China(Nos.2021YFC2203502,2022YFF0711502)the National Natural Science Foundation of China(NSFC,Grant Nos.12173077,12003062)+5 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences,grant No.PTYQ2022YZZD01China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01A360)。
文摘Aiming at the subband division of ultra-wide bandwidth low-frequency(UWL)signal(frequency coverage range:704–4032 MHz)of the Xinjiang 110 m QiTai radio Telescope(QTT),a scheme of ultra-wide bandwidth signal is designed.First,we analyze the effect of different window functions such as the Hanning window,Hamming window,and Kaiser window on the performance of finite impulse response(FIR)digital filters,and implement a critical sampling polyphase filter bank(CS-PFB)based on the Hamming window FIR digital filter.Second,we generate 3328 MHz simulation data of ultra-wideband pulsar baseband in the frequency range of 704–4032 MHz using the ultra-wide bandwidth pulsar baseband data generation algorithm based on the 400 MHz bandwidth pulsar baseband data obtained from Parkes CASPSR observations.Third,we obtain 26 subbands of 128 MHz based on CS-PFB and the simulation data,and the pulse profile of each subband by coherent dispersion,integration,and folding.Finally,the phase of each subband pulse profile is aligned by non-coherent dedispersion,and to generate a broadband pulse profile,which is basically the same as the pulse profile obtained from the original data using DSPSR.The experimental results show that the scheme for the QTT UWL receiving system is feasible,and the proposed channel algorithm in this paper is effective.
基金supported by National Key R&D Program of China No. 2018YFE0202900 and National SKA Program of China No. 2020SKA0120100supported by the Specialized Research Fund for State Key Laboratories and National Natural Science Foundation of China (NSFC, Grant Nos. 11703047, 11773041, U2031119, 12041303, 12173052, 12003047 and 12173053)+2 种基金supported by the CAS “Light of West China” Programsupported by the Youth Innovation Promotion Association of CAS (id. 2018075)the CAS “Light of West China” Program and the Science and Technology Program of Guizhou Province ([2021] 4001)。
文摘We present the estimation of solar observation with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).For both the quiet Sun and the Sun with radio bursts,when pointing directly to the Sun,the total power received by FAST would be out of the safe operational range of the signal chain,even resulting in damage to the receiver.As a conclusion,the Sun should be kept at least~2°away from the main beam during observations at~1.25 GHz.The separation for lower frequency should be larger.For simplicity,the angular separation between the FAST beam and the Sun is suggested to be~5°for observations at 200 MHz or higher bands.
基金supported by the National Natural Science Foundation of China(NSFC,Grant No.U1931137)the National Key Basic Research Program of China(2018YFA0404702)。
文摘Dual-reflector antennas are widely used in astronomical observations and satellite communication.Structural deformations of the reflectors for radio telescopes are inevitable in outside working conditions due to exterior environment loads,which will cause distortion in the surface of the primary reflector and displacement of the subreflector,then lead to gain degradation and misalignment.In this paper,the influence and correction of misalignment in a dual-reflector antenna have been studied.From the perspective of wavefront aberration,a method is proposed to correct the wavefront primary aberration by adjusting the subreflector position.The characteristics of wavefront errors caused by structural deformation of the reflector have been analyzed,and relationships between the position motions of the subreflector and the Seidel wavefront aberrations are derived.The adjustment quantities of the subreflector are also derived.The results show the appropriate positional change of the subreflector in the lateral and axial directions can effectively correct the effects of the tilt and defocus in the primary aberrations caused by antenna structural deformations.
基金the International Partnership Program of the Chinese Academy of Sciences No.114A11-KYSB20200029the National Natural Science Foundation of China(NSFC,Grant No.12041301)the National Key R&D Program of China No.2020YC2201700。
文摘In this paper,we report a real-time Fast Radio Burst(FRB)searching system that has been successfully implemented with the 19 beam receiver of the Five-hundred-meter Aperture Spherical radio Telescope(FAST).The relatively small field of view of FAST makes the search for new FRBs challenging,but its high sensitivity significantly improves the accuracy of FRB localization and enables the detection of high-precision neutral hydrogen absorption lines generated by FRBs.Our goal is to develop an FRB searching system capable of realtime detection of FRBs that allows high-time resolution spectro-temporal studies among the repeated bursts,as well as detailed investigations of these bursts and exploration of FRB progenitor models.The data from each beam of the 19-beam receiver are fed into a high-performance computing node server,which performs real-time searches for pulses with a wide dispersion measure(DM)range of 20–10,000 pc cm^(-3) with step efficiency of 25%in real time.Then,the head node server aggregates all the candidate signals from each beam within a given time,determining their authenticity based on various criteria,including arrival time,pulse width,signal-to-noise ratio and coincidence patterns among the 19 beams.Within the 1.05–1.45 GHz operating bandwidth of the FAST 19beam receiver,the system achieves a frequency resolution of 122.07 kHz and a time resolution of 270.336μs.Subsequently,our team detected a series of bursts with a DM of 566 on 2019 August 30 confirming them as FRB121102.The FRB searching system enables the 19-beam receiver of FAST to detect repeated/one-off pulses/bursts in real time.
基金supported by the National Key Research and Development Program of China (2022YFF0711502)the National Natural Science Foundation of China (NSFC) (12273025 and 12133010)supported by China National Astronomical Data Center (NADC), CAS Astronomical Data Center and Chinese Virtual Observatory (China-VO)。
文摘Location-based cross-matching is a preprocessing step in astronomy that aims to identify records belonging to the same celestial body based on the angular distance formula. The traditional approach involves comparing each record in one catalog with every record in the other catalog, resulting in a one-to-one comparison with high computational complexity. To reduce the computational time, index partitioning methods are used to divide the sky into regions and perform local cross-matching. In addition, cross-matching algorithms have been adopted on highperformance architectures to improve their efficiency. But the index partitioning methods and computation architectures only increase the degree of parallelism, and cannot decrease the complexity of pairwise-based crossmatching algorithm itself. A better algorithm is needed to further improve the performance of cross-matching algorithm. In this paper, we propose a 3d-tree-based cross-matching algorithm that converts the angular distance formula into an equivalent 3dEuclidean distance and uses 3d-tree method to reduce the overall computational complexity and to avoid boundary issues. Furthermore, we demonstrate the superiority of the 3d-tree approach over the 2d-tree method and implement it using a multi-threading technique during both the construction and querying phases. We have experimentally evaluated the proposed 3d-tree cross-matching algorithm using publicly available catalog data. The results show that our algorithm applied on two 32-core CPUs achieves equivalent performance than previous experiments conducted on a six-node CPU-GPU cluster.