For a misfit dislocation,the balance equations satisfied by the displacement fields are modified,and an extra term proportional to the second-order derivative appears in the resulting misfit equation compared with the...For a misfit dislocation,the balance equations satisfied by the displacement fields are modified,and an extra term proportional to the second-order derivative appears in the resulting misfit equation compared with the equation derived by Yao et al.This second-order derivative describes the lattice discreteness effect that arises from the surface effect.The core structure of a misfit dislocation and the change in interfacial spacing that it induces are investigated theoretically in the framework of an improved Peierls-Nabarro equation in which the effect of discreteness is fully taken into account.As an application,the structure of the misfit dislocation for a honeycomb structure in a two-dimensional heterostructure is presented.展开更多
The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and...The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γ′ interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys.展开更多
The structural property of GaSb epilayers grown on semi-insulator GaAs (001) substrate by metalorganic chemical vapor deposition (MOCVD) using Triethylgallium (TEGa) and trimethylantimony (TMSb), was investiga...The structural property of GaSb epilayers grown on semi-insulator GaAs (001) substrate by metalorganic chemical vapor deposition (MOCVD) using Triethylgallium (TEGa) and trimethylantimony (TMSb), was investigated by variation of the Sb:Ga (V/Ill) ratio. An optimum V/Ill ratio of 1.4 was determined in our growth conditions. Using transmission electron microscopy (TEM), we found that there was an interracial misfit dislocations (IMF) growth mode in our experiment, in which the large misfit strain between epilayer and substrate is relaxed by periodic 90 deg. IMF array at the hetero-epitaxial interface. The rms roughness of a 300 nm-thick GaSb layer is only 2.7 nm in a 10μm×10μm scan from atomic force microscopy (AFM) result. The best hole density and mobility of 300 nm GaSb epilayer are 5.27xi06 cm-3(1.20×106) and 553 cm2-V-l.s-1 (2340) at RT (77 K) from Hall measurement, respectively. These results indicate that the IMF growth mode can be used in MOCVD epitaxial technology similar to molecular beam epitaxy (MBE) technology to produce the thinner GaSb layer with low density of dislocations and other defects on GaAs substrate for the application of devices.展开更多
The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic...The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic modeling, with special focus on the factors influ- encing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interracial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60^-mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become in- creasingly significant when the moving matrix dislocation is very close to the interracial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results.展开更多
Glide dislocations with periodic pentagon-heptagon pairs are investigated within the theory of one-dimensional misfit dislocations in the framework of an improved Peierls–Nabarro(P–N)equation in which the lattice di...Glide dislocations with periodic pentagon-heptagon pairs are investigated within the theory of one-dimensional misfit dislocations in the framework of an improved Peierls–Nabarro(P–N)equation in which the lattice discreteness is fully considered.We find an approximate solution to handle misfit dislocations,where the second-order derivative appears in the improved P–N equation.This result is practical for periodic glide dislocations with narrow width,and those in the BN/AlN heterojunction are studied.The structure of the misfit dislocations and adhesion work are obtained explicitly and verified by first-principles calculations.Compared with shuffle dislocations,the compression force in the tangential direction of glide dislocations has a greater impact on the normal direction,and the contributions of the normal displacement to the interfacial energy cannot simply be ignored.展开更多
Cu films of30nm and 15 nm thick were deposited on MgO(001) substrates at 185℃ by dc plasma-sputtering at 1.9kv and 8 mA in pure Ar gas. A dc bias voltage Vs, of 0 V or -80 V was applied to the substrate during depos...Cu films of30nm and 15 nm thick were deposited on MgO(001) substrates at 185℃ by dc plasma-sputtering at 1.9kv and 8 mA in pure Ar gas. A dc bias voltage Vs, of 0 V or -80 V was applied to the substrate during deposition. Structural and electrical proper-ties have been investigated by cross-sectional transmission electron microscopy (XTEM), high resolution XTEM (XHRTEM) and by measuring temperature coefficient of electrical resistance (TCR;η) in the temperature interval of-135℃ to 0 ℃. The Cu film is pol- ycrystalline at Vs= 0 V while it epitaxially grows with Cu(00 )|| MgO(00 1) and Cu[0 10] || MgO[010] at Vs,=-80 V. However, the latter has a very rough surface. The change of η with film thickness and Vs is interpreted in terms of the structure change. Misfit dislocations and lattice expansion are induced along the MgO surface to relax the strain energy due to the lattice mismatch between Cu and MgO.展开更多
Systematic approaches are presented to extract the interfacial potentials from the ab initio adhesive energy of the interface system by using the Chen–M ¨obius inversion method. We focus on the interface structu...Systematic approaches are presented to extract the interfacial potentials from the ab initio adhesive energy of the interface system by using the Chen–M ¨obius inversion method. We focus on the interface structure of the metal(111)/Zn O(0001)in this work. The interfacial potentials of Ag–Zn and Ag–O are obtained. These potentials can be used to solve some problems about Ag/Zn O interfacial structure. Three metastable interfacial structures are investigated in order to check these potentials. Using the interfacial potentials we study the procedure of interface fracture in the Ag/Zn O(0001) interface and discuss the change of the energy, stress, and atomic structures in tensile process. The result indicates that the exact misfit dislocation reduces the total energy and softens the fracture process. Meanwhile, the formation and mobility of the vacancy near the interface are observed.展开更多
We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computa...We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.展开更多
According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calcul...According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.展开更多
CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with inc...CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.展开更多
α/β(hcp/bcc)interfaces are of great importance in the microstructure development and the mechanical properties of titanium and zirconium alloys.This work contributes to the study of interface energetics and interfac...α/β(hcp/bcc)interfaces are of great importance in the microstructure development and the mechanical properties of titanium and zirconium alloys.This work contributes to the study of interface energetics and interfacial structures of the precipitate in the hcp/bcc system based on a simulation study using molecular statics(MS)and molecular dynamics(MD).The input orientation relationship(OR)was calculated based on the O-line criterion.Based on the energy of the interfaces containing the invariant line(IL),two preferred facets were determined by the Wulff construction,which explained the observed orientations of the habit plane(HP)and the side facet(SF).The deviation of the observed precipitate morphology from the equilibrium shape was discussed in terms of interface kinetics.The structures of the interfaces surrounding a three-dimensional(3 D)precipitate,including the preferred facets and the end face,were obtained at the atomic level.The simulated dislocation structures and atomic structures in these interfaces are in good agreement with those of the experimental observations for Ti-Cr alloys.A method was suggested for modifying the O-cell structure with the guidance of the relaxed structure,yielding consistency between the calculated dislocation structure based on the generalized O-element approach and the simulation results.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11874093).
文摘For a misfit dislocation,the balance equations satisfied by the displacement fields are modified,and an extra term proportional to the second-order derivative appears in the resulting misfit equation compared with the equation derived by Yao et al.This second-order derivative describes the lattice discreteness effect that arises from the surface effect.The core structure of a misfit dislocation and the change in interfacial spacing that it induces are investigated theoretically in the framework of an improved Peierls-Nabarro equation in which the effect of discreteness is fully taken into account.As an application,the structure of the misfit dislocation for a honeycomb structure in a two-dimensional heterostructure is presented.
基金supported by the National Basic Research Program of China (Grant No.2011CB606402)the National Natural Science Foundation of China (Grant No.51071091)
文摘The effect of H impurity on the misfit dislocation in Ni-based single-crystal superalloy is investigated using the molecular dynamic simulation. It includes the site preferences of H impurity in single crystals Ni and Ni3Al, the interaction between H impurity and the misfit dislocation and the effect of H impurity on the moving misfit dislocation. The calculated energies and simulation results show that the misfit dislocation attracts H impurity which is located at the γ/γ′ interface and Ni3Al and H impurity on the glide plane can obstruct the glide of misfit dislocation, which is beneficial to improving the mechanical properties of Ni based superalloys.
基金supported by the National Natural Science Foundation of China(Grant Nos.51071038and60576007)Program for New Century Excellent Talents in University(NCET-09-0265)the Sichuan Province Science Foundation for Youths(No.2010JQ0002)
文摘The structural property of GaSb epilayers grown on semi-insulator GaAs (001) substrate by metalorganic chemical vapor deposition (MOCVD) using Triethylgallium (TEGa) and trimethylantimony (TMSb), was investigated by variation of the Sb:Ga (V/Ill) ratio. An optimum V/Ill ratio of 1.4 was determined in our growth conditions. Using transmission electron microscopy (TEM), we found that there was an interracial misfit dislocations (IMF) growth mode in our experiment, in which the large misfit strain between epilayer and substrate is relaxed by periodic 90 deg. IMF array at the hetero-epitaxial interface. The rms roughness of a 300 nm-thick GaSb layer is only 2.7 nm in a 10μm×10μm scan from atomic force microscopy (AFM) result. The best hole density and mobility of 300 nm GaSb epilayer are 5.27xi06 cm-3(1.20×106) and 553 cm2-V-l.s-1 (2340) at RT (77 K) from Hall measurement, respectively. These results indicate that the IMF growth mode can be used in MOCVD epitaxial technology similar to molecular beam epitaxy (MBE) technology to produce the thinner GaSb layer with low density of dislocations and other defects on GaAs substrate for the application of devices.
基金supported by the financial support from NSFC (Grant 11472113 and Grant 11272130)
文摘The interactions between the moving dislocation within matrix channel and the interfacial misfit dislocation networks on the two-phase interfaces in Ni-based single crystal superalloys are studied carefully via atomic modeling, with special focus on the factors influ- encing the critical bowing stress of moving dislocations in the matrix channel. The results show that the moving matrix dislocation type and its position with respect to the interfacial misfit dislocation segments have considerable influences on the interactions. If the moving matrix dislocation is pure screw, it reacts with the interracial misfit dislocation segments toward dislocation linear energy reduction, which decreases the critical bowing stress of screw dislocation due to dislocation linear energy release during the dislocation reactions. If the moving matrix dislocation is of 60^-mixed type, it is obstructed by the interaction between the mixed matrix dislocations and the misfit interfacial dislocation segments. As a result, the critical bowing stress increases significantly because extra interactive energy needs to be overcome. These two different effects on the critical bowing stress become in- creasingly significant when the moving matrix dislocation is very close to the interracial misfit dislocation segments. In addition, the matrix channel width also has a significant influence on the critical bowing stress, i.e. the narrower the matrix channel is, the higher the critical bowing stress is. The classical Orowan formula is modified to predict these effects on the critical bowing stress of moving matrix dislocation, which is in good agreement with the computational results.
文摘Glide dislocations with periodic pentagon-heptagon pairs are investigated within the theory of one-dimensional misfit dislocations in the framework of an improved Peierls–Nabarro(P–N)equation in which the lattice discreteness is fully considered.We find an approximate solution to handle misfit dislocations,where the second-order derivative appears in the improved P–N equation.This result is practical for periodic glide dislocations with narrow width,and those in the BN/AlN heterojunction are studied.The structure of the misfit dislocations and adhesion work are obtained explicitly and verified by first-principles calculations.Compared with shuffle dislocations,the compression force in the tangential direction of glide dislocations has a greater impact on the normal direction,and the contributions of the normal displacement to the interfacial energy cannot simply be ignored.
文摘Cu films of30nm and 15 nm thick were deposited on MgO(001) substrates at 185℃ by dc plasma-sputtering at 1.9kv and 8 mA in pure Ar gas. A dc bias voltage Vs, of 0 V or -80 V was applied to the substrate during deposition. Structural and electrical proper-ties have been investigated by cross-sectional transmission electron microscopy (XTEM), high resolution XTEM (XHRTEM) and by measuring temperature coefficient of electrical resistance (TCR;η) in the temperature interval of-135℃ to 0 ℃. The Cu film is pol- ycrystalline at Vs= 0 V while it epitaxially grows with Cu(00 )|| MgO(00 1) and Cu[0 10] || MgO[010] at Vs,=-80 V. However, the latter has a very rough surface. The change of η with film thickness and Vs is interpreted in terms of the structure change. Misfit dislocations and lattice expansion are induced along the MgO surface to relax the strain energy due to the lattice mismatch between Cu and MgO.
基金Project supported by the National Natural Science Foundation of China(Grant No.50971024)the National Key Basic Research Program of China(Grant No.2011CB606401)
文摘Systematic approaches are presented to extract the interfacial potentials from the ab initio adhesive energy of the interface system by using the Chen–M ¨obius inversion method. We focus on the interface structure of the metal(111)/Zn O(0001)in this work. The interfacial potentials of Ag–Zn and Ag–O are obtained. These potentials can be used to solve some problems about Ag/Zn O interfacial structure. Three metastable interfacial structures are investigated in order to check these potentials. Using the interfacial potentials we study the procedure of interface fracture in the Ag/Zn O(0001) interface and discuss the change of the energy, stress, and atomic structures in tensile process. The result indicates that the exact misfit dislocation reduces the total energy and softens the fracture process. Meanwhile, the formation and mobility of the vacancy near the interface are observed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.51075335,51174168,10902086,and 51274167)the NPU Foundation for Fundamental Research,China (Grant Nos. 201109 and NPU-FFR-JC201005)
文摘We modify the anisotropic phase-field crystal model (APFC), and present a semi-implicit spectral method to numerically solve the dynamic equation of the APFC model. The process results in the acceleration of computations by orders of magnitude relative to the conventional explicit finite-difference scheme, thereby, allowing us to work on a large system and for a long time. The faceting transitions introduced by the increasing anisotropy in crystal growth are then discussed. In particular, we investigate the morphological evolution in heteroepitaxial growth of our model. A new formation mechanism of misfit dislocations caused by vacancy trapping is found. The regular array of misfit dislocations produces a small-angle grain boundary under the right conditions, and it could significantly change the growth orientation of epitaxial layers.
文摘According to the misfitting dislocation theory,a method of theoretical calculation was devel- oped for the specific energy of the semicoherent interface between microalloy carbonitrides and austenite matrix.The calculating formulae were derived and the results were satisfactorily applied on the research works.
基金financially supported by the National Natural Science Foundation of China(NSAF)joint Fund(Grant No.U2030102)the National Natural Science Foundation of China(Grant No.52071124)。
文摘CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy.
基金Supports from the National Key Research and Development Program of China(Grant No.2016YFB0701304)the National Natural Science Foundation of China(Grant No.51871131)。
文摘α/β(hcp/bcc)interfaces are of great importance in the microstructure development and the mechanical properties of titanium and zirconium alloys.This work contributes to the study of interface energetics and interfacial structures of the precipitate in the hcp/bcc system based on a simulation study using molecular statics(MS)and molecular dynamics(MD).The input orientation relationship(OR)was calculated based on the O-line criterion.Based on the energy of the interfaces containing the invariant line(IL),two preferred facets were determined by the Wulff construction,which explained the observed orientations of the habit plane(HP)and the side facet(SF).The deviation of the observed precipitate morphology from the equilibrium shape was discussed in terms of interface kinetics.The structures of the interfaces surrounding a three-dimensional(3 D)precipitate,including the preferred facets and the end face,were obtained at the atomic level.The simulated dislocation structures and atomic structures in these interfaces are in good agreement with those of the experimental observations for Ti-Cr alloys.A method was suggested for modifying the O-cell structure with the guidance of the relaxed structure,yielding consistency between the calculated dislocation structure based on the generalized O-element approach and the simulation results.