期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
A Review of Nutrients to Extend Healthspan and Avoid Cancer by Reducing the Amount of Protein Misfolding, Free Radicals, and Calcification
1
作者 Alfred Ordman 《Journal of Cancer Therapy》 2020年第8期497-506,共10页
Two major causes of human aging include protein misfolding and free radicals. Protein misfolding occurs when proteins which are synthesized by cells do not have the proper amino acid sequence or do not achieve the cor... Two major causes of human aging include protein misfolding and free radicals. Protein misfolding occurs when proteins which are synthesized by cells do not have the proper amino acid sequence or do not achieve the correct three-dimensional configuration to function properly. Peer-reviewed scientific literature explains how these processes contribute to many age-associated diseases. A few examples include cancer, heart disease, dementias including Parkinson’s and Alzheimer’s </span><span style="font-family:Verdana;">diseases, and arthritis. This article reviews how protein misfolding can be slowed and even reversed by appropriate nutrition, potentially slowing and reversing these diseases. One cause of misfolding is mRNA translation occurring too rapidly for proper chaperone binding or protein folding. A second cause is deficiency of amino acids so improper tRNA binding occurs. A third cause is free radicals. They cause mutations promoting misfolding and cancer, and oxidize lipoproteins causing plaque in circulation promoting heart disease and stroke. Nutrients with proven actions will contribute to longer healthspans for our aging population. Healthspan is the number of healthy years before chronic or terminal diseases substantially impair the quality of life. This can be done especially by slowing and reversing these three causes of PM. Niacin, quercetin, EGCG, alpha-lipoic acid, N-acetyl-carnitine, tyrosine and cysteine address protein misfolding. Vitamin C and glutathione trap free radicals. Vitamin K amplifies free radical cancer killing by vitamin C and activates decalcification enzymes which remove calcium deposits in the circulatory system and strengthen bones. Apigenin activates the pathway of caloric restriction and induces cancer cell apoptosis. This article provides citations and explanations of the progress showing new ways to maintain health as we age. For convenience and cost savings, many of these ingredients can be consumed in supplement form, taken twice a day to maintain water-soluble nutrient levels. 展开更多
关键词 Protein misfolding Healthspan CANCER Alzheimer’s Arthritis DECALCIFICATION APIGENIN
下载PDF
OSMR is a potential driver of inflammation in amyotrophic lateral sclerosis
2
作者 Wenzhi Chen Shishi Jiang +2 位作者 Shu Li Cheng Li Renshi Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2513-2521,共9页
Amyotrophic lateral sclerosis is a neurodegenerative disease,and the molecular mechanism underlying its pathology remains poorly understood.However,inflammation is known to play an important role in the development of... Amyotrophic lateral sclerosis is a neurodegenerative disease,and the molecular mechanism underlying its pathology remains poorly understood.However,inflammation is known to play an important role in the development of this condition.To identify driver genes that affect the inflammatory response in amyotrophic lateral sclerosis,as well as potential treatment targets,it is crucial to analyze brain tissue samples from patients with both sporadic amyotrophic lateral sclerosis and C9orf72-related amyotrophic lateral sclerosis.Therefore,in this study we used a network-driven gene analysis tool,NetBID2.0,which is based on SJARACNe,a scalable algorithm for the reconstruction of accurate cellular networks,to experimentally analyze sequencing data from patients with sporadic amyotrophic lateral sclerosis.The results showed that the OSMR gene is pathogenic in amyotrophic lateral sclerosis and participates in the progression of amyotrophic lateral sclerosis by mediating the neuroinflammatory response.Furthermore,there were differences in OSMR activity and expression between patients with sporadic amyotrophic lateral sclerosis and those with C9orf72-related amyotrophic lateral sclerosis.These findings suggest that OSMR may be a diagnostic and prognostic marker for amyotrophic lateral sclerosis. 展开更多
关键词 amyotrophic lateral sclerosis DRIVER NEUROINFLAMMATION OSMR C9ORF72 neurodegenerative disease PATHOGENESIS oxidative stress protein misfolding mitochondrial dysfunction
下载PDF
Adenosine A1 receptor ligands bind toα-synuclein:implications forα-synuclein misfolding andα-synucleinopathy in Parkinson’s disease
3
作者 Elisabet Jakova Mohamed Taha Moutaoufik +2 位作者 Jeremy S.Lee Mohan Babu Francisco S.Cayabyab 《Translational Neurodegeneration》 SCIE 2022年第1期809-834,共26页
Background:Accumulatingα-synuclein(α-syn)aggregates in neurons and glial cells are the staples of many synucleinopathy disorders,such as Parkinson’s disease(PD).Since brain adenosine becomes greatly elevated in age... Background:Accumulatingα-synuclein(α-syn)aggregates in neurons and glial cells are the staples of many synucleinopathy disorders,such as Parkinson’s disease(PD).Since brain adenosine becomes greatly elevated in ageing brains and chronic adenosine A1 receptor(A1R)stimulation leads to neurodegeneration,we determined whether adenosine or A1R receptor ligands mimic the action of known compounds that promoteα-syn aggregation(e.g.,the amphetamine analogue 2-aminoindan)or inhibitα-syn aggregation(e.g.,Rasagiline metabolite 1-aminoindan).In the present study,we determined whether adenosine,A1R receptor agonist N^(6)-Cyclopentyladenosine(CPA)and antago-nist 8-cyclopentyl-1,3-dipropylxanthine(DPCPX)could directly interact withα-syn to modulateα-syn aggregation and neurodegeneration of dopaminergic neurons in the substantia nigra(SN).Methods:Nanopore analysis and molecular docking were used to test the binding properties of CPA and DPCPX withα-syn in vitro.Sprague-Dawley rats were administered with 7-day intraperitoneal injections of the A1R ligands and 1-and 2-aminoindan,and levels ofα-syn aggregation and neurodegeneration were examined in the SN pars compacta and hippocampal regions using confocal imaging and Western blotting.Results:Using nanopore analysis,we showed that the A1R agonists(CPA and adenosine)interacted with the N-terminus ofα-syn,similar to 2-aminoindan,which is expected to promote a“knot”conformation andα-syn misfolding.In contrast,the A1R antagonist DPCPX interacted with the N-and C-termini ofα-syn,similar to 1-aminoindan,which is expected to promote a“loop”conformation that preventsα-syn misfolding.Molecular docking studies revealed that adenosine,CPA and 2-aminoindan interacted with the hydrophobic core ofα-syn N-terminus,whereas DPCPX and 1-aminoindan showed direct binding to the N-and C-terminal hydrophobic pockets.Confocal imaging and Western blot analyses revealed that chronic treatments with CPA alone or in combination with 2-aminoindan increasedα-syn expression/aggregation and neurodegeneration in both SN pars compacta and hippocampus.In contrast,DPCPX and 1-aminoindan attenuated the CPA-inducedα-syn expression/aggregation and neurodegeneration in SN and hippocampus.Conclusions:The results indicate that A1R agonists and drugs promoting a“knot”conformation ofα-syn can causeα-synucleinopathy and increase neuronal degeneration,whereas A1R antagonists and drugs promoting a“loop”con-formation ofα-syn can be harnessed for possible neuroprotective therapies to decreaseα-synucleinopathy in PD. 展开更多
关键词 Alpha-synucleinopathy Adenosine A1 receptor N6-cyclopentyladenosine 8-cyclopentyl-1 3-dipropylxanthine 1-aminoindan 2-aminoindan Neuroprotection Neurodegeneration Protein misfolding
原文传递
Outline and computational approaches of protein misfolding
4
作者 Xin LIU 《Frontiers in Biology》 CSCD 2010年第3期211-218,共8页
Protein misfolding is a general causation of classical conformational diseases and many pathogenic changes that are the result of structural conversion.Here I review recent progress in clinical and computational appro... Protein misfolding is a general causation of classical conformational diseases and many pathogenic changes that are the result of structural conversion.Here I review recent progress in clinical and computational approaches for each stage of the misfolding process,aiming to present readers an outline for swift comprehension of this field. 展开更多
关键词 computational approaches protein misfolding conformational diseases
原文传递
α-Synuclein oligomers and fibrils:partners in crime in synucleinopathies 被引量:1
5
作者 Alessandra Bigi Roberta Cascella Cristina Cecchi 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2332-2342,共11页
The misfolding and aggregation of a-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies,such as Parkinson’s disease,dementia with Lewy bodies,and... The misfolding and aggregation of a-synuclein is the general hallmark of a group of devastating neurodegenerative pathologies referred to as synucleinopathies,such as Parkinson’s disease,dementia with Lewy bodies,and multiple system atrophy.In such conditions,a range of different misfolded aggregates,including oligomers,protofibrils,and fibrils,are present both in neurons and glial cells.Growing expe rimental evidence supports the proposition that solu ble oligomeric assemblies,formed during the early phases of the aggregation process,are the major culprits of neuronal toxicity;at the same time,fibrillar confo rmers appear to be the most efficient at propagating among interconnected neurons,thus contributing to the spreading ofα-synuclein pathology.Moreover,α-synuclein fibrils have been recently repo rted to release soluble and highly toxic oligomeric species,responsible for an immediate dysfunction in the recipient neurons.In this review,we discuss the current knowledge about the plethora of mechanisms of cellular dysfunction caused byα-synuclein oligome rs and fibrils,both contributing to neurodegeneration in synucleinopathies. 展开更多
关键词 amyloid aggregation neurodegeneration Parkinson’s disease protein aggregation protein misfolding
下载PDF
Roles of constitutively secreted extracellular chaperones in neuronal cell repair and regeneration
6
作者 Sandeep Satapathy Mark R.Wilson 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期769-772,共4页
Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the different... Protein quality control involves many processes that jointly act to regulate the expression, localization, turnover, and degradation of proteins, and has been highlighted in recent studies as critical to the differentiation of stem cells during regeneration. The roles of constitutively secreted extracellular chaperones in neuronal injury and disease are poorly understood. Extracellular chaperones are multifunctional proteins expressed by many cell types, including those of the nervous system, known to facilitate protein quality control processes. These molecules exert pleiotropic effects and have been implicated as playing important protective roles in a variety of stress conditions, including tissue damage, infections, and local tissue inflammation. This article aims to provide a critical review of what is currently known about the functions of extracellular chaperones in neuronal repair and regeneration and highlight future directions for this important research area. We review what is known of four constitutively secreted extracellular chaperones directly implicated in processes of neuronal damage and repair, including transthyretin, clusterin, α2-macroglobulin, and neuroserpin, and propose that investigation into the effects of these and other extracellular chaperones on neuronal repair and regeneration has the potential to yield valuable new therapies. 展开更多
关键词 cell viability CLUSTERIN extracellular chaperones inflammation NEUROSERPIN protein misfolding TRANSTHYRETIN α2-macroglobulin
下载PDF
Alexander disease:the road ahead
7
作者 María A.Pajares Elena Hernández-Gerez +1 位作者 Milos Pekny Dolores Pérez-Sala 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第10期2156-2160,共5页
Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein,a type III intermediate filament protein expressed in astrocytes.Both early(infantile or juvenile)and a... Alexander disease is a rare neurodegenerative disorder caused by mutations in the glial fibrillary acidic protein,a type III intermediate filament protein expressed in astrocytes.Both early(infantile or juvenile)and adult onsets of the disease are known and,in both cases,astrocytes present characteristic aggregates,named Rosenthal fibers.Mutations are spread along the glial fibrillary acidic protein sequence disrupting the typical filament network in a dominant manner.Although the presence of aggregates suggests a proteostasis problem of the mutant forms,this behavior is also observed when the expression of wild-type glial fibrillary acidic protein is increased.Additionally,several isoforms of glial fibrillary acidic protein have been described to date,while the impact of the mutations on their expression and proportion has not been exhaustively studied.Moreover,the posttranslational modification patterns and/or the protein-protein interaction networks of the glial fibrillary acidic protein mutants may be altered,leading to functional changes that may modify the morphology,positioning,and/or the function of several organelles,in turn,impairing astrocyte normal function and subsequently affecting neurons.In particular,mitochondrial function,redox balance and susceptibility to oxidative stress may contribute to the derangement of glial fibrillary acidic protein mutant-expressing astrocytes.To study the disease and to develop putative therapeutic strategies,several experimental models have been developed,a collection that is in constant growth.The fact that most cases of Alexander disease can be related to glial fibrillary acidic protein mutations,together with the availability of new and more relevant experimental models,holds promise for the design and assay of novel therapeutic strategies. 展开更多
关键词 ASTROCYTES endoplasmic reticulum stress glial fibrillary acidic protein mutants metabolism misassembly misfolding NEURODEGENERATION oxidative stress posttranslational modifications unfolded protein response
下载PDF
Unraveling the molecular mechanism of prion disease:Insights fromα2 area mutations in human prion protein
8
作者 谈荣日 夏奎 +2 位作者 寻大毛 宗文军 余幼胜 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期657-665,共9页
Prion diseases are a class of fatal neurodegenerative diseases caused by misfolded prion proteins.The main reason is that pathogenic prion protein has a strong tendency to aggregate,which easily induces the damage to ... Prion diseases are a class of fatal neurodegenerative diseases caused by misfolded prion proteins.The main reason is that pathogenic prion protein has a strong tendency to aggregate,which easily induces the damage to the central nervous system.Point mutations in the human prion protein gene can cause prion diseases such as Creutzfeldt-Jakob and Gerstmann's syndrome.To understand the mechanism of mutation-induced prion protein aggregation,the mutants in an aqueous solution are studied by molecular dynamics simulations,including the wild type,V180I,H187R and a double point mutation which is associated with CJD and GSS.After running simulations for 500 ns,the results show that these three mutations have different effects on the kinetic properties of PrP.The high fluctuations around the N-terminal residues of helix 2 in the V180I variant lead to a decrease in hydrogen bonding on helix 2,while an increase in the number of hydrogen bonds between the folded regions promotes the generation ofβ-sheet.Meanwhile,partial deletion of salt bridges in the H187R and double mutants allows the sub-structural domains of the prion protein to separate,which would accelerate the conversion from PrPC to PrPSc.A similar trend is observed in both SASA and Rg for all three mutations,indicating that the conformational space is reduced and the structure is compact. 展开更多
关键词 prion protein MUTATIONS misfolding molecular dynamics simulations
下载PDF
Amyloid cross-seeding between Ab and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes 被引量:1
9
作者 Yanxian Zhang Yijing Tang +4 位作者 Dong Zhang Yonglan Liu Jian He Yung Chang Jie Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期225-235,共11页
Amyloid cross-seeding of different amyloid proteins is considered as a highly possible mechanism for exacerbating the transmissible pathogenesis of protein misfolding disease(PMDs)and for explaining a molecular link b... Amyloid cross-seeding of different amyloid proteins is considered as a highly possible mechanism for exacerbating the transmissible pathogenesis of protein misfolding disease(PMDs)and for explaining a molecular link between different PMDs,including Alzheimer disease(AD)and type 2 diabetes(T2D),AD and Parkinson disease(PD),and AD and prion disease.Among them,AD and T2D are the most prevalent PMDs,affecting millions of people globally,while Ab and hIAPP are the causative peptides responsible for AD and T2D,respectively.Increasing clinical and epidemiological evidences lead to a hypothesis that the cross-seeding of Ab and hIAPP is more biologically responsible for a pathological link between AD and T2D.In this review,we particularly focus on(i)the most recent and important findings of amyloid cross-seeding between Ab and hIAPP from in vitro,in vivo,and in silico studies,(ii)a mechanistic role of structural compatibility and sequence similarity of amyloid proteins(beyond Ab and hIAPP)in amyloid cross-seeding,and(iii)several current challenges and future research directions in this lessstudied field.Review of amyloid cross-seeding hopefully provides some mechanistic understanding of amyloidogenesis and inspires more efforts for the better design of next-generation drugs/strategies to treat different PMDs simultaneously. 展开更多
关键词 Amyloid peptide Amyloid aggregation Amyloid cross-seeding Amyloid-b hIAPP Protein misfolding
下载PDF
Heat Shock Protein 40 (Hsp40) and Hsp70 Protein Expression in Oral Squamous Cell Carcinoma (OSCC) 被引量:1
10
作者 Adi Prayitno Elyana Asnar +2 位作者 Okid Parama Astirin Dinar Rosmala Suhartono Taat Putra 《Journal of Cancer Therapy》 2013年第3期734-741,共8页
Introduction: As a chaperone, heat shock protein acts as central integrators of protein homeostasis in cell. The form of these functions is to help setting up a complex protein molecular fold (folded protein) in many ... Introduction: As a chaperone, heat shock protein acts as central integrators of protein homeostasis in cell. The form of these functions is to help setting up a complex protein molecular fold (folded protein) in many important settings, such as growth, differentiation, and the ability to live. It has become clear that the control system plays an important role if the folding process fails or an error occurs, causing folding abnormalities and targeted functionality to accumulate. The accumulation of faulty protein folding would harm cells and can result in death. Apparently, there is a correlation between protein folding error with various diseases, such as diabetes mellitus and cancer. Method: We examined protein levels in all samples using Dotblott with monoclonal antibody anti-Hsp40 and anti-Hsp70. Levels of the protein content was read using a densitometer. Modification of Dot Blot was as follows: treatment was conducted with 3 × SSC, added with 20 mL blocking solution, add with total protein samples of 10 mg/ml on nitrocellulose paper, prehybridized, incubated at 70° for 30 seconds, incubated at 70° for 30 seconds with primary antibody anti-Hsp40 or Hsp70 protein and then added with second antibody HRP anti-Hsp40 or Hsp70 protein, treated with 3 × SSC and visualized with TSA HRP, and then administered with streptavidin, biothynil tyramide, and, finally, added with chromogen (DAB) in a confined space. Result: From the analysis of the data using Manova test with Wilk’s Lambda, there were significant differences in the levels of Hsp40 between Benign Oral Lesion (mean 688.31 area) and OSCC (mean 1354.59 area) patients (p 0.070), there was also a highly significant difference in Hsp70 levels between patients who experienced Benign Oral Lesion (mean 529.82 area) and OSCC (mean 1346.32 area) patients (p 0.006). Conclusion: OSCC patients have increased Hsp70 levels, so it is possible that something is going wrong in protein folding. Errors in protein folding result in a new homeostasis or inhibition of apoptosis and increasing cell proliferation that triggers carcinogenesis. Hsp40 acts as co-chaperones. 展开更多
关键词 CHAPERONE Hsp40 HSP70 misfolding OSCC
下载PDF
Viscoelasticity of amyloid plaques in transgenic mouse brain studied by Brillouin microspectroscopy and correlative Raman analysis
11
作者 Sara Mattana Silvia Caponi +2 位作者 Francesco Tamagnini Daniele Fioretto Francesca Palombo 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2017年第6期3-16,共14页
A myloidopathy is one of the most prominent hallmarks of Alkheimer's disease(AD),the leading cause of dementia worldwide,and is characterized by the accumulation of amyloid plaques in the brain parenchyma.The plaq... A myloidopathy is one of the most prominent hallmarks of Alkheimer's disease(AD),the leading cause of dementia worldwide,and is characterized by the accumulation of amyloid plaques in the brain parenchyma.The plaques consist of abnornal deposits mainly composed of an aggregation-prone protein fragment,B-amyloid 140/1-42,into the extracellular matrix.Brillouin micro-spectroscopy is an all-optical contactless technique that is based on the interaction between visible light and longitudinal acoustic waves or phonons,giving access to the viscoelasticity of a sample on a subcellular scale.Here,we describe the first application of micromechanical mapping based on Brillouin scattering spectroscopy to probe the stifness of individual amyloid plaques in the hippocampal part of the brain of a B-amyloid overexpressi ng transgenic mouse.Correlative analysis based on Brillouin and Raman microspectroscopy showed that amyloid plaques have a complex structure with a rigid core of B-pleated shoet conformation(B-aryloid)protein sur-rounded by a softer ring-shaped region richer in lipids and other protein conformations.These preliminary results give a new insight into the plaque biophysics and biomechanics,and a valuable contrast mechanism for the study and diagnosis of amnyloidopathy. 展开更多
关键词 Alzheimer's imaging vibrational spectrosecopy protein misfolding light scattering
下载PDF
Prion-induced neurotoxicity: Possible role for cell cycle activity and DNA damage response
12
作者 Raymond Bujdoso Matthias Landgraf +1 位作者 Walker S Jackson Alana M Thackray 《World Journal of Virology》 2015年第3期188-197,共10页
Protein misfolding neurodegenerative diseases arisethrough neurotoxicity induced by aggregation of host proteins. These conditions include Alzheimer's disease, Huntington's disease, Parkinson's disease, mo... Protein misfolding neurodegenerative diseases arisethrough neurotoxicity induced by aggregation of host proteins. These conditions include Alzheimer's disease, Huntington's disease, Parkinson's disease, motor neuron disease, tauopathies and prion diseases. Collectively, these conditions are a challenge to society because of the increasing aged population and through the real threat to human food security by animal prion diseases. It is therefore important to understand the cellular and molecular mechanisms that underlie protein misfolding--induced neurotoxicity as this will form the basis for designing strategies to alleviate their burden. Prion diseases are an important paradigm for neurodegenerative conditions in general since several of these maladies have now been shown to display prion--like phenomena. Increasingly, cell cycle activity and the DNA damage response are recognised as cellular events that participate in the neurotoxic process of various neurodegenerative diseases, and their associated animal models, which suggests they are truly involved in the pathogenic process and are not merely epiphenomena. Here we review the role of cell cycle activity and the DNA damage response in neurodegeneration associated with protein misfolding diseases, and suggest that these events contribute towards prion--induced neurotoxicity. In doing so, we highlight PrP transgenic Drosophila as a tractable model for the genetic analysis of transmissible mammalian prion disease. 展开更多
关键词 NEURODEGENERATIVE disease Protein misfolding PRION Transmissible Cell cycle DNA repair CHROMATIN PrP transgenic DROSOPHILA
下载PDF
Human Prion Protein Conformational Changes Susceptibility: A Molecular Dynamics Simulation Study
13
作者 Laura Alejandra Mandujano-Rosas Daniel Osorio-González +1 位作者 Pedro Guillermo Reyes-Romero Jorge Mulia-Rodríguez 《Open Journal of Biophysics》 2014年第4期169-175,共7页
Prion proteins are related to the development of incurable and invariably fatal neurodegenerative diseases in humans and animals. The pathogenicity involves the conversion of the host-encoded-alpha rich isoform of pri... Prion proteins are related to the development of incurable and invariably fatal neurodegenerative diseases in humans and animals. The pathogenicity involves the conversion of the host-encoded-alpha rich isoform of prion protein, PrPC, into a misfolded beta-strand rich conformer, PrPSc. Although it has already been described that many punctual mutations alter the stability of PrPC, making it more prone to adopt an abnormal misfolded structure, the majority of cases reported among general population are sporadic in wild-type organisms. Thus, in this work we studied the dynamics and stability profiles of wild-type human prion protein by Molecular Dynamics (MD) simulation at different solvent temperatures. This analysis brought out certain residues and segments of the prion protein as critical to conformational changes;these results are consistent with experimental reports showing that protein mutants in those positions are related to the development of disease. 展开更多
关键词 PRION PROTEIN misfolding SUSCEPTIBILITY MOLECULAR Dynamics Simulation
下载PDF
Protein seeding in Alzheimer's disease and Parkinson's disease: Similarities and differences
14
作者 Tarek Ibrahim JoAnne McLaurin 《World Journal of Neurology》 2014年第4期23-35,共13页
Neurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer's disease(AD) and Parkinson's disease(PD) have both demonstrated suscep... Neurodegenerative pathology can be seeded by introduction of misfolded proteins and peptides into the nervous system. Models of Alzheimer's disease(AD) and Parkinson's disease(PD) have both demonstrated susceptibility to this seeding mechanism, emphasizing the role of misfolded conformations of disease-specific proteins and peptides in disease progression. Thinking of the amyloidogenic amyloid-beta peptide(Aβ) and alpha-synuclein(α-syn), of AD and PD, respectively, as prionoids requires a comparison of these molecules and the mechanisms underlying the progression of disease. Aβ and α-syn, despite their size differences, are both natively unstructured and misfold into β-structured conformers. Additionally, several studies implicate the significant role of membrane interactions, such as those with lipid rafts in the plasma membrane, in mediating protein aggregation and transfer of Aβ and α-syn between cells that may be common to both AD and PD. Examination of inter-neuronal transfer of proteins/peptides provides evidence into the core mechanism of neuropathological propagation. Specifically, uptake of aggregates likely occurs by the endocytic pathway, possibly in response to their formation of membrane pores via a mechanism shared with pore-forming toxins. Failure of cellular clearance machinery to degrade misfolded proteins favours their release into the extracellular space, where they can be taken up by directly connected, nearby neurons. Although similarities between AD and PD are frequent and include mechanistically similar transfer processes, what differentiates these diseases, in terms of temporal and spatial patterns of propagation, may be in part due to the differing kinetics of protein misfolding. Several examples of animal models demonstrating seeding and propagation by exogenous treatment with Aβ and α-syn highlight the importance of both the environment in which these seeds are formed as well as the environment into which the seeds are propagated. Although these studies suggest potent seeding effects by both Aβ and α-syn, they emphasize the need for future studies to thoroughly characterize "seeds" as well as analyze changes in the nervous system in response to exogenous insults. 展开更多
关键词 Alzheimer’s DISEASE Parkinson’s DISEASE Prionoid SEEDING PROPAGATION Protein misfolding
下载PDF
The metabolome identity:basis for discovery of biomarkers in neurodegeneration 被引量:1
15
作者 Julie-Myrtille Bourgognon Joern R.Steinert 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第3期387-390,共4页
Neurodegenerative disorders are often associated with cellular dysfunction caused by underlying protein-misfolding signalling. Numerous neuropathologies are diagnosed at late stage symptomatic changes which occur in r... Neurodegenerative disorders are often associated with cellular dysfunction caused by underlying protein-misfolding signalling. Numerous neuropathologies are diagnosed at late stage symptomatic changes which occur in response to these molecular malfunctions and treatment is often too late or restricted only to the slowing of further cell death. Important new strategies to identify early biomarkers with predictive value to intervene with disease progression at stages where cell dysfunction has not progressed irreversibly is of paramount importance. Thus, the identification of these markers presents an essential opportunity to identify and target disease pathways. This review highlights some important metabolic alterations detected in neurodegeneration caused by misfolded prion protein and discusses common toxicity pathways identified across different neurodegenerative diseases. Thus, having established some commonalities between various degenerative conditions, detectable metabolic changes may be of extreme value as an early diagnostic biomarker in disease. 展开更多
关键词 METABOLOME NEURODEGENERATION NEUROINFLAMMATION NITRIC oxide redox stress biomarker misfolded protein PRION disease
下载PDF
Using Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to analyze differentially expressed brain polypeptides in scrapie strain 22L-infected BALB/c mice 被引量:1
16
作者 Xiangyu Liao Jiayu Wan +7 位作者 Wensen Liu Xin Tang Wufei Zhu Na XU Jing Xu Nan Li Yaping Chang Chuanjing Ju 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第23期1801-1805,共5页
Differentialiy expressed polypeptides in the brain of a BALB/c mouse model infected with scrapie strain 22L were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results sh... Differentialiy expressed polypeptides in the brain of a BALB/c mouse model infected with scrapie strain 22L were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The results showed that 21 peptides were down-regulated, with peptides of mass-to-charge ratio 758.772 5 and mass-to-charge ratio 5 432.206 9, demonstrating the most significant decreases. These finding suggest that these peptides are candidate biomarkers and may play an important role in the pathogenesis of prion disease. 展开更多
关键词 prion diseases misfolded prion protein imaging mass spectrometry PEPTIDES biological markers mass spectrometry
下载PDF
Circulating extracellular vesicles:friends and foes in neurodegeneration
17
作者 Anna Picca Flora Guerra +3 位作者 Riccardo Calvani Hélio JoséCoelho-Junior Cecilia Bucci Emanuele Marzetti 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第3期534-542,共9页
Extracellular vesicles have been identified as pivotal mediators of intercellular communication with critical roles in physiological and pathological conditions.Via this route,several molecules(e.g.,nucleic acids,prot... Extracellular vesicles have been identified as pivotal mediators of intercellular communication with critical roles in physiological and pathological conditions.Via this route,several molecules(e.g.,nucleic acids,proteins,metabolites) can be transferred to proximal and distant targets to convey specific information.Extracellular vesicle-associated cargo molecules have been proposed as markers of several disease conditions for their potential of tracking down the generating cell.Indeed,circulating extracellular vesicles may represent biomarkers of dysfunctional cellular quality control systems especially in conditions characterized by the accrual of intracellular misfolded proteins.Furthermore,the identification of extracellular vesicles as tools for the delivery of nucleic acids or other cargo molecules to diseased tissues makes these circulating shuttles possible targets for therapeutic development.The increasing interest in the study of extracellular vesicles as biomarkers resides mainly in the fact that the identification of peripheral levels of extracellular vesicle-associated proteins might reflect molecular events occurring in hardly accessible tissues,such as the brain,thereby serving as a "brain liquid biopsy".The exploitation of extracellular vesicles for diagnostic and therapeutic purposed might offer unprecedented opportunities to develop personalized approaches.Here,we discuss the bright and dark sides of extracellular vesicles in the setting of two main neurodegenerative diseases(i.e.,Parkinson's and Alzheimer's diseases).A special focus will be placed on the possibility of using extracellular vesicles as biomarkers for the two conditions to enable disease tracking and treatment monitoring. 展开更多
关键词 Alzheimer's disease amyloid protein EXOSOMES misfolded proteins mitochondrial-derived vesicles NEUROINFLAMMATION Parkinson's disease quality control Tau protein Α-SYNUCLEIN
下载PDF
Nanopolyphenol rejuvenates microglial surveillance of multiple misfolded proteins through metabolic reprogramming 被引量:1
18
作者 Dayuan Wang Xiao Gu +15 位作者 Xinyi Ma Jun Chen Qizhi Zhang Zhihua Yu Juan Li Meng Hu Xiaofang Tan Yuyun Tang Jianrong Xu Minjun Xu Qingxiang Song Huahua Song Gan Jiang Zaiming Tang Xiaoling Gao Hongzhuan Chen 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第2期834-851,共18页
Microglial surveillance plays an essential role in clearing misfolded proteins such as amyloid-beta,tau,andα-synuclein aggregates in neurodegenerative diseases.However,due to the complex structure and ambiguous patho... Microglial surveillance plays an essential role in clearing misfolded proteins such as amyloid-beta,tau,andα-synuclein aggregates in neurodegenerative diseases.However,due to the complex structure and ambiguous pathogenic species of the misfolded proteins,a universal approach to remove the misfolded proteins remains unavailable.Here,we found that a polyphenol,α-mangostin,reprogrammed metabolism in the disease-associated microglia through shifting glycolysis to oxidative phosphorylation,which holistically rejuvenated microglial surveillance capacity to enhance microglial phagocytosis and autophagy-mediated degradation of multiple misfolded proteins.Nanoformulation ofα-mangostin efficiently deliveredα-mangostin to microglia,relieved the reactive status and rejuvenated the misfolded-proteins clearance capacity of microglia,which thus impressively relieved the neuropathological changes in both Alzheimer’s disease and Parkinson’s disease model mice.These findings provide direct evidences for the concept of rejuvenating microglial surveillance of multiple misfolded proteins through metabolic reprogramming,and demonstrate nanoformulatedα-mangostin as a potential and universal therapy against neurodegenerative diseases. 展开更多
关键词 MICROGLIA Metabolism Misfolded proteins PHAGOCYTOSIS Degradation POLYPHENOL Nanoparticles Neurodegenerative diseases
原文传递
Current understanding of the molecular mechanisms in Parkinson's disease:Targets for potential treatments 被引量:27
19
作者 Panchanan Maiti Jayeeta Manna Gary L.Dunbar 《Translational Neurodegeneration》 SCIE CAS 2017年第1期256-290,共35页
Gradual degeneration and loss of dopaminergic neurons in the substantia nigra,pars compacta and subsequent reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s dis... Gradual degeneration and loss of dopaminergic neurons in the substantia nigra,pars compacta and subsequent reduction of dopamine levels in striatum are associated with motor deficits that characterize Parkinson’s disease(PD).In addition,half of the PD patients also exhibit frontostriatal-mediated executive dysfunction,including deficits in attention,short-term working memory,speed of mental processing,and impulsivity.The most commonly used treatments for PD are only partially or transiently effective and are available or applicable to a minority of patients.Because,these therapies neither restore the lost or degenerated dopaminergic neurons,nor prevent or delay the disease progression,the need for more effective therapeutics is critical.In this review,we provide a comprehensive overview of the current understanding of the molecular signaling pathways involved in PD,particularly within the context of how genetic and environmental factors contribute to the initiation and progression of this disease.The involvement of molecular chaperones,autophagy-lysosomal pathways,and proteasome systems in PD are also highlighted.In addition,emerging therapies,including pharmacological manipulations,surgical procedures,stem cell transplantation,gene therapy,as well as complementary,supportive and rehabilitation therapies to prevent or delay the progression of this complex disease are reviewed. 展开更多
关键词 Parkinson’s disease NEURODEGENERATION Protein misfolding Molecular chaperones Cell therapy
原文传递
Apolipoproteins and amyloid fibril formation in atherosclerosis 被引量:2
20
作者 Chai Lean Teoh Michael D.W.Griffin Geoffrey J.Howlett 《Protein & Cell》 SCIE CSCD 2011年第2期116-127,共12页
Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures.The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with th... Amyloid fibrils arise from the aggregation of misfolded proteins into highly-ordered structures.The accumulation of these fibrils along with some non-fibrillar constituents within amyloid plaques is associated with the pathogenesis of several human degenerative diseases.A number of plasma apolipoproteins,including apolipoprotein(apo)A-I,apoA-II,apoC-II and apoE are implicated in amyloid formation or influence amyloid formation by other proteins.We review present knowledge of amyloid formation by apolipoproteins in disease,with particular focus on atherosclerosis.Further insights into the molecular mechanisms underlying their amyloidogenic propensity are obtained from in vitro studies which describe factors affecting apolipoprotein amyloid fibril formation and interactions.Additionally,we outline the evidence that amyloid fibril formation by apolipoproteins might play a role in the development and progression of atherosclerosis,and highlight possible molecular mechanisms that could contribute to the pathogenesis of this disease. 展开更多
关键词 misfolding APOLIPOPROTEINS amyloid fibril ATHEROSCLEROSIS
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部