期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
INFLUENCE OF A MISORIENTATION ANGLE ON AN ENERGR OF THE SYMMETRIC GRAIN BOUNDARY IN FCC METALS 被引量:1
1
作者 M. D. Starostenkov, B. F. Demyanov and A. V. Weckman General Physics Department, Altai State Technical University, Lenin st., 46, Barnaul, 656099, Russia 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期540-545,共6页
In the present work the research of grain boundary (CB) energy versus angle of misorientation in fcc metals Al, Cu, An and Ni was carried out. An axis of CB misorientation is a direction [100], angle of misorientatio... In the present work the research of grain boundary (CB) energy versus angle of misorientation in fcc metals Al, Cu, An and Ni was carried out. An axis of CB misorientation is a direction [100], angle of misorientation makes from 2皍p in 23*. The interatomic interaction was opproximated by Morse' s pair semi-empirical potential. Two variants of relaxation technique were used: (1) rigid relax- ation with the change of atom quantity per a GB (vacancy relaxation ) and (2) full atomic relaxation by a molecular static method. The obtained orientation dependence has a good agreement with experi- ment. There are cusps on a curve in the range of special GB angles.The comparison of obtained curves with calculated ones in model Van der Merwe was carried out. Dependencies obtained in our investiga- tions are not smooth and have an oscillatory character. The oscillations reflect a discrete structure of a lattice. 展开更多
关键词 FCC metal misorientation angle boumdary energy structure relaxation
下载PDF
Relationships between microhardness, microstructure, and grain orientation in laser-welded joints with different welding speeds for Ti6Al4V titanium alloy 被引量:14
2
作者 Zhen-zhen XU Zhi-qiang DONG +2 位作者 Zhao-hui YU Wen-ke WANG Jian-xun ZHANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1277-1289,共13页
The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-wel... The microhardness curve trend and its relationships with microstructure and misorientation were analyzed to enhance the comprehension of the microstructure and mechanical property of micro-areas in Ti6 Al4 V laser-welded joints with different welding speeds. The microhardness measured on the fusion line(H_m) is the highest from the weld center to the base metal. H_m increases with increasing weld width in a welded joint and increasing degree of the non-uniformity in all studied welded joints. The microhardness decreases from the weld metal to the base metal with decreasing amount of martensite α’ and increasing amount of original α phase. When the microstructure is mainly composed of martensite α’, the microhardness changes with the cooling rate, grain size of the martensite, and peak values of the fraction of misorientation angle of the martensite in a wide weld metal zone or weld center at different welding speeds, whereas the difference is small in a narrow weld metal zone. 展开更多
关键词 MICROHARDNESS MICROSTRUCTURE misorientation angle NON-UNIFORMITY welding speed
下载PDF
Temperature dependence of microstructure and texture in cold drawn aluminum wire 被引量:2
3
作者 Xiao-guang MA Jian CHEN +3 位作者 Yang YANG Lei LI Zheng CHEN Wen YAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第4期763-770,共8页
The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The... The effect of strain and drawing temperature on the evolution of microstructure and fiber textures of aluminum wiresdrawn at room temperature and cryogenic temperature was investigated by TEM and EBSD observations.The results show that lowangle boundaries frequency increases and high angle boundaries frequency decreases with strain increasing when the strain is low.Athigh strain,most of grain and dislocation boundaries are parallel to the drawn direction and low angle boundaries frequencydecreases and high angle boundaries frequency increases with strain increasing.The decrease of deformation temperature leads tomicrostructure finer and low angle boundaries frequency increasing.Texture analysis indicates that volume fraction of complextexture component decreases with strain increasing and a mixture of?111?and?100?fiber texture forms at high strain.?111?is stableat low strains but?100?becomes stable at high strain.The decrease of temperature can enhance the stability of?111?orientation athigh strain. 展开更多
关键词 aluminum wire cryogenic drawn deformation dislocation boundary fiber texture misorientation angle distribution
下载PDF
Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
4
作者 Xiaotao Hu Yimeng Song +5 位作者 Zhaole Su Haiqiang Jia Wenxin Wang Yang Jiang Yangfeng Li Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第3期134-139,共6页
Gallium nitride(GaN) thin film of the nitrogen polarity(N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition(MOCVD). The misorienta... Gallium nitride(GaN) thin film of the nitrogen polarity(N-polar) was grown on C-plane sapphire and misoriented C-plane sapphire substrates respectively by metal-organic chemical vapor deposition(MOCVD). The misorientation angle is off-axis from C-plane toward M-plane of the substrates, and the angle is 2°and 4°respectively. The nitrogen polarity was confirmed by examining the images of the scanning electron microscope before and after the wet etching in potassium hydroxide(KOH) solution. The morphology was studied by the optical microscope and atomic force microscope. The crystalline quality was characterized by the x-ray diffraction. The lateral coherence length, the tilt angle, the vertical coherence length, and the vertical lattice-strain were acquired using the pseudo-Voigt function to fit the x-ray diffraction curves and then calculating with four empirical formulae. The lateral coherence length increases with the misorientation angle, because higher step density and shorter distance between adjacent steps can lead to larger lateral coherence length.The tilt angle increases with the misorientation angle, which means that the misoriented substrate can degrade the identity of crystal orientation of the N-polar GaN film. The vertical lattice-strain decreases with the misorientation angle. The vertical coherence length does not change a lot as the misorientation angle increases and this value of all samples is close to the nominal thickness of the N-polar GaN layer. This study helps to understand the influence of the misorientation angle of misoriented C-plane sapphire on the morphology, the crystalline quality, and the microstructure of N-polar GaN films. 展开更多
关键词 metal-organic chemical vapor deposition(MOCVD) misoriented sapphire substrate misorientation angle x-ray diffraction N-polar GaN
下载PDF
Hetero-deformation promoted strengthening and toughening in BCC rich eutectic and near eutectic high entropy alloys 被引量:1
5
作者 D.H.Chung J.Lee +5 位作者 Q.F.He Y.K.Kim K.R.Lim H.S.Kim Y.Yang Y.S.Na 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期1-9,共9页
Heterostructured eutectic high-entropy alloys(EHEAs)have attracted significant attention owing to their novel properties,such as balanced combinations of strength and fracture toughness.However,the toughening/strength... Heterostructured eutectic high-entropy alloys(EHEAs)have attracted significant attention owing to their novel properties,such as balanced combinations of strength and fracture toughness.However,the toughening/strengthening mechanisms of these EHEAs have not been thoroughly investigated.In this study,we developed a series of dual-phase Al_((18–2x))Co_(30)Cr_((11+x))Fe_((11+x))Ni_(3)0(x=-1,0,1)eutectic and neareutectic HEAs containing face-centered cubic(FCC)and body-centered cubic(BCC)phases.Despite the high amount of BCC,which is referred to as the brittle phase,newly developed EHEAs exhibited superior fracture toughness.Interestingly,we discovered that a fully eutectic HEA exhibited further improvements in both yield stress and fracture toughness,outperforming our off-eutectic and other previously reported HEAs.By combining experiments and theoretical models,we demonstrated that the synergistic increase in both strength and toughness in our fully eutectic HEA was derived from the high hetero-deformationinduced(HDI)strengthening/toughening associated with a high misorientation angle at the grain/phase boundaries. 展开更多
关键词 Eutectic high entropy alloy Fracture toughness Heterogeneous structure Hetero deformation induced strengthening misorientation angle
原文传递
A molecular dynamics study on the tribological behavior of molybdenum disulfide with grain boundary defects during scratching processes
6
作者 Boyu WEI Ning KONG +5 位作者 Jie ZHANG Hongbo LI Zhenjun HONG Hongtao ZHU Yuan ZHUANG Bo WANG 《Friction》 SCIE EI CAS CSCD 2021年第5期1198-1212,共15页
The effect of grain boundary(GB)defects on the tribological properties of MoS_(2) has been investigated by molecular dynamics(MD)simulations.The GB defects‐containing MoS_(2) during scratching process shows a lower c... The effect of grain boundary(GB)defects on the tribological properties of MoS_(2) has been investigated by molecular dynamics(MD)simulations.The GB defects‐containing MoS_(2) during scratching process shows a lower critical breaking load than that of indentation process,owing to the combined effect of pushing and interlocking actions between the tip and MoS_(2) atoms.The wear resistance of MoS_(2) with GB defects is relevant to the misorientation angle due to the accumulation of long Mo-S bonds around the GBs.Weakening the adhesion strength between the MoS_(2) and substrate is an efficient way to improve the wear resistance of MoS_(2) with low‐angle GBs. 展开更多
关键词 MoS_(2) grain boundary tribological behavior molecular dynamics misorientation angle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部