Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as dev...Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.展开更多
In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting op...In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting optimization is how to choose the next BM which needs to be shot according to the previous engagements and results,thus maximizing the expected return of BMs killed or minimizing the cost of BMs penetration.Motivated by this,this study aims to determine an optimal shooting policy for a two-layer missile defense(TLMD)system.This paper considers a scenario in which the TLMD system wishes to shoot at a collection of BMs one at a time,and to maximize the return obtained from BMs killed before the system demise.To provide a policy analysis tool,this paper develops a general model for shooting decision-making,the shooting engagements can be described as a discounted reward Markov decision process.The index shooting policy is a strategy that can effectively balance the shooting returns and the risk that the defense mission fails,and the goal is to maximize the return obtained from BMs killed before the system demise.The numerical results show that the index policy is better than a range of competitors,especially the mean returns and the mean killing BM number.展开更多
The concept of smart power requires to combine soft and hard power. Thus, smart power is a new approach for the US politics towards the Middle East. As a consequence of smart power politics of the US, some newly membe...The concept of smart power requires to combine soft and hard power. Thus, smart power is a new approach for the US politics towards the Middle East. As a consequence of smart power politics of the US, some newly members of the EU and Turkey has become a part of missile defense system. This is a significant indicator of usage of smart power for the EU members and Turkey. The security policies and practices of the US disclose a necessity for straight allies. For this reason, the relationship between the US, the EU and Turkey may be conceptualize with reference to the concept of smart power. In the case of Missile Defense System, Turkey has agreed to be a participant of this system after signing an agreement with the US. After that, Turkish government has confronted with some interior and exterior political difficulties. One of the most important difficulties is the interior resistance of missile defense system's Kiirecik Radar Station and its usage in Turkey. Another important point is the question of control of Turkish National Security and Defense strategy. In that respect, the US government's smart power applications may be included in the establishment of the radar station. The EU has also been included in that strategy. This paper will argue smart power practices of the US, the EU and Turkey with reference to comparative practices of power politics and the case of Missile Defense System. In this way, a comprehensive and system-type assessment of possible responses and the change in relations between stakeholder states not only in the issue of a set-up of a Turkish radar station, but on a broader range of international "hard" security balance will be demonstrated.展开更多
A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized su...A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized super-virus mode, it can effectively establish global control over large systems of any natures. The technology can use numerous scattered and dissimilar facilities in an integral and holistic way, allowing them to work together in goal-driven supercomputer mode. The approach can be useful for advanced air and missile defense in a variety of ways which is described and explained in this paper.展开更多
This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance system...This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.展开更多
At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that targe...At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.展开更多
This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes application...This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.展开更多
Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experimen...Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.展开更多
Since 1952,Turkey has formally committed to the US/NATO alliance and taken part in the collective defense system within the Alliance.However,in September 2013,Turkey made a surprise move and announced its intention to...Since 1952,Turkey has formally committed to the US/NATO alliance and taken part in the collective defense system within the Alliance.However,in September 2013,Turkey made a surprise move and announced its intention to buy China’s long-range missile defense system over the competitors’products including from NATO countries.Notably,the maker of the FD-2000(HQ-9)is a state-owned company-China Precision Machinery Import and Export Corporation(CPMEIC),which is under American sanctions for transferring missile technology to the states opposed to the West and its allies.Due to the risk that China could access NATO’s intelligence and military information across the region,Turkey’s choice of the Chinese FD-2000 set off a massive controversy,raising NATO’s suspicions about Turkey’s intentions,which carries serious implications for Turkey’s attempts to strengthen ties with China.This study aims to provide insights into Turkey’s pursuit of an indigenous Long Range Missile Defense System(T-LORAMIDS),providing an evaluation focusing on three questions:What is Turkey’s motivation in acquiring T-LORAMIDS?How does Turkey’s realist behavior fit into its decision to purchase T-LORAMIDS?Will Turkey’s choice of missile defense system eventually make its current intimate involvement with US/NATO redundant?The article’s basic argument is that Turkey remains a staunch ally of the West,and its incongruous behavior may be explained and validated through analyzing its realpolitik approach and desire for strategic balance,which is perceived by Turkey as attempting to retain the advantage in managing strategic relations with its partners.展开更多
文摘Ballistic missile defense system (BMDS) is important for its special role in ensuring national security and maintaining strategic balance. Research on modeling and simulation of the BMDS beforehand is essential as developing a real one requires lots of manpower and resources. BMDS is a typical complex system for its nonlinear, adaptive and uncertainty characteristics. The agent-based modeling method is well suited for the complex system whose overall behaviors are determined by interactions among individual elements. A multi-agent decision support system (DSS), which includes missile agent, radar agent and command center agent, is established based on the studies of structure and function of BMDS. Considering the constraints brought by radar, intercept missile, offensive missile and commander, the objective function of DSS is established. In order to dynamically generate the optimal interception plan, the variable neighborhood negative selection particle swarm optimization (VNNSPSO) algorithm is proposed to support the decision making of DSS. The proposed algorithm is compared with the standard PSO, constriction factor PSO (CFPSO), inertia weight linear decrease PSO (LDPSO), variable neighborhood PSO (VNPSO) algorithm from the aspects of convergence rate, iteration number, average fitness value and standard deviation. The simulation results verify the efficiency of the proposed algorithm. The multi-agent DSS is developed through the Repast simulation platform and the constructed DSS can generate intercept plans automatically and support three-dimensional dynamic display of missile defense process.
基金supported by the National Natural Science Foundation of China(7170120971771216)+1 种基金Shaanxi Natural Science Foundation(2019JQ-250)China Post-doctoral Fund(2019M653962)
文摘In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting optimization is how to choose the next BM which needs to be shot according to the previous engagements and results,thus maximizing the expected return of BMs killed or minimizing the cost of BMs penetration.Motivated by this,this study aims to determine an optimal shooting policy for a two-layer missile defense(TLMD)system.This paper considers a scenario in which the TLMD system wishes to shoot at a collection of BMs one at a time,and to maximize the return obtained from BMs killed before the system demise.To provide a policy analysis tool,this paper develops a general model for shooting decision-making,the shooting engagements can be described as a discounted reward Markov decision process.The index shooting policy is a strategy that can effectively balance the shooting returns and the risk that the defense mission fails,and the goal is to maximize the return obtained from BMs killed before the system demise.The numerical results show that the index policy is better than a range of competitors,especially the mean returns and the mean killing BM number.
文摘The concept of smart power requires to combine soft and hard power. Thus, smart power is a new approach for the US politics towards the Middle East. As a consequence of smart power politics of the US, some newly members of the EU and Turkey has become a part of missile defense system. This is a significant indicator of usage of smart power for the EU members and Turkey. The security policies and practices of the US disclose a necessity for straight allies. For this reason, the relationship between the US, the EU and Turkey may be conceptualize with reference to the concept of smart power. In the case of Missile Defense System, Turkey has agreed to be a participant of this system after signing an agreement with the US. After that, Turkish government has confronted with some interior and exterior political difficulties. One of the most important difficulties is the interior resistance of missile defense system's Kiirecik Radar Station and its usage in Turkey. Another important point is the question of control of Turkish National Security and Defense strategy. In that respect, the US government's smart power applications may be included in the establishment of the radar station. The EU has also been included in that strategy. This paper will argue smart power practices of the US, the EU and Turkey with reference to comparative practices of power politics and the case of Missile Defense System. In this way, a comprehensive and system-type assessment of possible responses and the change in relations between stakeholder states not only in the issue of a set-up of a Turkish radar station, but on a broader range of international "hard" security balance will be demonstrated.
文摘A novel control ideology and technology for solving tasks in large distributed networked systems will be briefed. Based on active scenarios self-navigating and self-matching distributed spaces in a highly organized super-virus mode, it can effectively establish global control over large systems of any natures. The technology can use numerous scattered and dissimilar facilities in an integral and holistic way, allowing them to work together in goal-driven supercomputer mode. The approach can be useful for advanced air and missile defense in a variety of ways which is described and explained in this paper.
基金the National Natural Science Foundation of China(Grant No.12072090).
文摘This paper investigates interception missiles’trajectory tracking guidance problem under wind field and external disturbances in the boost phase.Indeed,the velocity control in such trajectory tracking guidance systems of missiles is challenging.As our contribution,the velocity control channel is designed to deal with the intractable velocity problem and improve tracking accuracy.The global prescribed performance function,which guarantees the tracking error within the set range and the global convergence of the tracking guidance system,is first proposed based on the traditional PPF.Then,a tracking guidance strategy is derived using the integral sliding mode control techniques to make the sliding manifold and tracking errors converge to zero and avoid singularities.Meanwhile,an improved switching control law is introduced into the designed tracking guidance algorithm to deal with the chattering problem.A back propagation neural network(BPNN)extended state observer(BPNNESO)is employed in the inner loop to identify disturbances.The obtained results indicate that the proposed tracking guidance approach achieves the trajectory tracking guidance objective without and with disturbances and outperforms the existing tracking guidance schemes with the lowest tracking errors,convergence times,and overshoots.
文摘At evaluating the combat effectiveness of the defense system, target′s probability to penetrate the defended area is a primary care taking index. In this paper, stochastic model to compete the probability that target penetrates the defended area along any flight path is established by the state analysis and statistical equilibrium analysis of stochastic service system theory. The simulated annealing algorithm is an enlightening random search method based on Monte Carlo recursion, and it can find global optimal solution by simulating annealing process. Combining stochastic model to compete the probability and simulated annealing algorithm, this paper establishes the method to solve problem quantitatively about combat configuration optimization of weapon systems. The calculated result shows that the perfect configuration for fire cells of the weapon is fast found by using this method, and this quantificational method for combat configuration is faster and more scientific than previous one based on principle via map fire field.
文摘This paper relates to accepted presentation at international conference Air and Missile Defence Technology,November 16-17,2022,London UK(day two),reflecting contents of the presentation slides.It describes applications of the patented and internationally tested Spatial Grasp Technology(SGT)and its Spatial Grasp Language(SGL)for Integrated Air and Missile Defense(IAMD).Based on holistic space navigation and processing by recursive mobile code self-spreading in distributed words,SGT differs radically from traditional management of large systems as consisting of parts exchanging messages.The dynamic network of SGL interpreters can be arbitrarily large and cover terrestrial and celestial environments as powerful spatial engines.The paper contains an example of tracking and destruction of multiple cruise missiles by self-evolving spatial intelligence in SGL using networks of radar stations.It also briefs the growing multiple satellite constellation in Low Earth Orbits(LEO)for potential IAMD applications.Starting from Strategic Defense Initiative(SDI)of the past and then briefing the latest project of Space Development Agency,the paper shows SGL solutions for discovery,tracking,and destroying ballistic missiles and hypersonic gliders with the use of collectively behaving constellations of LEO satellites.It also shows how to organize higher levels of supervision of groups of mobile chasers fighting multiple targets(both potentially as missiles or drones),by providing their global awareness even consciousness in SGL which can drastically improve their performance.The latest version of SGT can be implemented on any platforms and put into operation in a short time,similarly to its previous versions in different countries.
文摘Equipment systems-of-systems (SOS) effectiveness evaluation can provide important reference for construction and optimization of the equipment SoS. After discussing the basic theory and methods of parallel experiments, we depict an SoS effectiveness analysis and evaluation method using parallel expe- riments theory in detail. A case study is carried out which takes the missile defense system as an example. An artificial system of the missile defense system is constructed with the multi-agent modeling method. Then, single factor, multiple factors and defense position deployment computational experiments are carried out and evaluated with the statistical analysis method. Experiment re- sults show that the altitude of the secondary interception missile is not the key factor which affects SoS effectiveness and putting the defense position ahead will increase defense effectiveness. The case study demonstrates the feasibility of the proposed method.
文摘Since 1952,Turkey has formally committed to the US/NATO alliance and taken part in the collective defense system within the Alliance.However,in September 2013,Turkey made a surprise move and announced its intention to buy China’s long-range missile defense system over the competitors’products including from NATO countries.Notably,the maker of the FD-2000(HQ-9)is a state-owned company-China Precision Machinery Import and Export Corporation(CPMEIC),which is under American sanctions for transferring missile technology to the states opposed to the West and its allies.Due to the risk that China could access NATO’s intelligence and military information across the region,Turkey’s choice of the Chinese FD-2000 set off a massive controversy,raising NATO’s suspicions about Turkey’s intentions,which carries serious implications for Turkey’s attempts to strengthen ties with China.This study aims to provide insights into Turkey’s pursuit of an indigenous Long Range Missile Defense System(T-LORAMIDS),providing an evaluation focusing on three questions:What is Turkey’s motivation in acquiring T-LORAMIDS?How does Turkey’s realist behavior fit into its decision to purchase T-LORAMIDS?Will Turkey’s choice of missile defense system eventually make its current intimate involvement with US/NATO redundant?The article’s basic argument is that Turkey remains a staunch ally of the West,and its incongruous behavior may be explained and validated through analyzing its realpolitik approach and desire for strategic balance,which is perceived by Turkey as attempting to retain the advantage in managing strategic relations with its partners.