期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data 被引量:2
1
作者 伍雪冬 王耀南 +1 位作者 刘维亭 朱志宇 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第6期546-551,共6页
On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random in... On the assumption that random interruptions in the observation process are modeled by a sequence of independent Bernoulli random variables, we firstly generalize two kinds of nonlinear filtering methods with random interruption failures in the observation based on the extended Kalman filtering (EKF) and the unscented Kalman filtering (UKF), which were shortened as GEKF and CUKF in this paper, respectively. Then the nonlinear filtering model is established by using the radial basis function neural network (RBFNN) prototypes and the network weights as state equation and the output of RBFNN to present the observation equation. Finally, we take the filtering problem under missing observed data as a special case of nonlinear filtering with random intermittent failures by setting each missing data to be zero without needing to pre-estimate the missing data, and use the GEKF-based RBFNN and the GUKF-based RBFNN to predict the ground radioactivity time series with missing data. Experimental results demonstrate that the prediction results of GUKF-based RBFNN accord well with the real ground radioactivity time series while the prediction results of GEKF-based RBFNN are divergent. 展开更多
关键词 prediction of time series with missing data random interruption failures in the observation neural network approximation
下载PDF
Comparison of Missing Data Imputation Methods in Time Series Forecasting 被引量:1
2
作者 Hyun Ahn Kyunghee Sun Kwanghoon Pio Kim 《Computers, Materials & Continua》 SCIE EI 2022年第1期767-779,共13页
Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.I... Time series forecasting has become an important aspect of data analysis and has many real-world applications.However,undesirable missing values are often encountered,which may adversely affect many forecasting tasks.In this study,we evaluate and compare the effects of imputationmethods for estimating missing values in a time series.Our approach does not include a simulation to generate pseudo-missing data,but instead perform imputation on actual missing data and measure the performance of the forecasting model created therefrom.In an experiment,therefore,several time series forecasting models are trained using different training datasets prepared using each imputation method.Subsequently,the performance of the imputation methods is evaluated by comparing the accuracy of the forecasting models.The results obtained from a total of four experimental cases show that the k-nearest neighbor technique is the most effective in reconstructing missing data and contributes positively to time series forecasting compared with other imputation methods. 展开更多
关键词 missing data imputation method time series forecasting LSTM
下载PDF
Missing Data Imputations for Upper Air Temperature at 24 Standard Pressure Levels over Pakistan Collected from Aqua Satellite 被引量:4
3
作者 Muhammad Usman Saleem Sajid Rashid Ahmed 《Journal of Data Analysis and Information Processing》 2016年第3期132-146,共16页
This research was an effort to select best imputation method for missing upper air temperature data over 24 standard pressure levels. We have implemented four imputation techniques like inverse distance weighting, Bil... This research was an effort to select best imputation method for missing upper air temperature data over 24 standard pressure levels. We have implemented four imputation techniques like inverse distance weighting, Bilinear, Natural and Nearest interpolation for missing data imputations. Performance indicators for these techniques were the root mean square error (RMSE), absolute mean error (AME), correlation coefficient and coefficient of determination ( R<sup>2</sup> ) adopted in this research. We randomly make 30% of total samples (total samples was 324) predictable from 70% remaining data. Although four interpolation methods seem good (producing <1 RMSE, AME) for imputations of air temperature data, but bilinear method was the most accurate with least errors for missing data imputations. RMSE for bilinear method remains <0.01 on all pressure levels except 1000 hPa where this value was 0.6. The low value of AME (<0.1) came at all pressure levels through bilinear imputations. Very strong correlation (>0.99) found between actual and predicted air temperature data through this method. The high value of the coefficient of determination (0.99) through bilinear interpolation method, tells us best fit to the surface. We have also found similar results for imputation with natural interpolation method in this research, but after investigating scatter plots over each month, imputations with this method seem to little obtuse in certain months than bilinear method. 展开更多
关键词 missing data Imputations Spatial Interpolation AQUA Satellite Upper Level Air Temperature AIRX3STML
下载PDF
Improved interpolation method based on singular spectrum analysis iteration and its application to missing data recovery
4
作者 王辉赞 张韧 +2 位作者 刘巍 王桂华 金宝刚 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第10期1351-1361,共11页
A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the p... A novel interval quartering algorithm (IQA) is proposed to overcome insufficiency of the conventional singular spectrum analysis (SSA) iterative interpolation for selecting parameters including the number of the principal components and the embedding dimension. Based on the improved SSA iterative interpolation, interpolated test and comparative analysis are carried out to the outgoing longwave radiation daily data. The results show that IQA can find globally optimal parameters to the error curve with local oscillation, and has advantage of fast computing speed. The improved interpolation method is effective in the interpolation of missing data. 展开更多
关键词 singular spectrum analysis outgoing longwave radiation interpolation of missing data interval quartering algorithm
下载PDF
Using Statistical Learning to Treat Missing Data: A Case of HIV/TB Co-Infection in Kenya
5
作者 Joshua O. Mwaro Linda Chaba Collins Odhiambo 《Journal of Data Analysis and Information Processing》 2020年第3期110-133,共24页
In this study, we investigate the effects of missing data when estimating HIV/TB co-infection. We revisit the concept of missing data and examine three available approaches for dealing with missingness. The main objec... In this study, we investigate the effects of missing data when estimating HIV/TB co-infection. We revisit the concept of missing data and examine three available approaches for dealing with missingness. The main objective is to identify the best method for correcting missing data in TB/HIV Co-infection setting. We employ both empirical data analysis and extensive simulation study to examine the effects of missing data, the accuracy, sensitivity, specificity and train and test error for different approaches. The novelty of this work hinges on the use of modern statistical learning algorithm when treating missingness. In the empirical analysis, both HIV data and TB-HIV co-infection data imputations were performed, and the missing values were imputed using different approaches. In the simulation study, sets of 0% (Complete case), 10%, 30%, 50% and 80% of the data were drawn randomly and replaced with missing values. Results show complete cases only had a co-infection rate (95% Confidence Interval band) of 29% (25%, 33%), weighted method 27% (23%, 31%), likelihood-based approach 26% (24%, 28%) and multiple imputation approach 21% (20%, 22%). In conclusion, MI remains the best approach for dealing with missing data and failure to apply it, results to overestimation of HIV/TB co-infection rate by 8%. 展开更多
关键词 missing data HIV/TB Co-Infection IMPUTATION missing at Random Count data
下载PDF
Fraction of Missing Information (γ) at Different Missing Data Fractions in the 2012 NAMCS Physician Workflow Mail Survey
6
作者 Qiyuan Pan Rong Wei 《Applied Mathematics》 2016年第10期1057-1067,共11页
In his 1987 classic book on multiple imputation (MI), Rubin used the fraction of missing information, γ, to define the relative efficiency (RE) of MI as RE = (1 + γ/m)?1/2, where m is the number of imputations, lead... In his 1987 classic book on multiple imputation (MI), Rubin used the fraction of missing information, γ, to define the relative efficiency (RE) of MI as RE = (1 + γ/m)?1/2, where m is the number of imputations, leading to the conclusion that a small m (≤5) would be sufficient for MI. However, evidence has been accumulating that many more imputations are needed. Why would the apparently sufficient m deduced from the RE be actually too small? The answer may lie with γ. In this research, γ was determined at the fractions of missing data (δ) of 4%, 10%, 20%, and 29% using the 2012 Physician Workflow Mail Survey of the National Ambulatory Medical Care Survey (NAMCS). The γ values were strikingly small, ranging in the order of 10?6 to 0.01. As δ increased, γ usually increased but sometimes decreased. How the data were analysed had the dominating effects on γ, overshadowing the effect of δ. The results suggest that it is impossible to predict γ using δ and that it may not be appropriate to use the γ-based RE to determine sufficient m. 展开更多
关键词 Multiple Imputation Fraction of missing Information (γ) Sufficient Number of Imputations missing data NAMCS
下载PDF
Improving Disease Prevalence Estimates Using Missing Data Techniques
7
作者 Elhadji Moustapha Seck Ngesa Owino Oscar Abdou Ka Diongue 《Open Journal of Statistics》 2016年第6期1110-1122,共14页
The prevalence of a disease in a population is defined as the proportion of people who are infected. Selection bias in disease prevalence estimates occurs if non-participation in testing is correlated with disease sta... The prevalence of a disease in a population is defined as the proportion of people who are infected. Selection bias in disease prevalence estimates occurs if non-participation in testing is correlated with disease status. Missing data are commonly encountered in most medical research. Unfortunately, they are often neglected or not properly handled during analytic procedures, and this may substantially bias the results of the study, reduce the study power, and lead to invalid conclusions. The goal of this study is to illustrate how to estimate prevalence in the presence of missing data. We consider a case where the variable of interest (response variable) is binary and some of the observations are missing and assume that all the covariates are fully observed. In most cases, the statistic of interest, when faced with binary data is the prevalence. We develop a two stage approach to improve the prevalence estimates;in the first stage, we use the logistic regression model to predict the missing binary observations and then in the second stage we recalculate the prevalence using the observed data and the imputed missing data. Such a model would be of great interest in research studies involving HIV/AIDS in which people usually refuse to donate blood for testing yet they are willing to provide other covariates. The prevalence estimation method is illustrated using simulated data and applied to HIV/AIDS data from the Kenya AIDS Indicator Survey, 2007. 展开更多
关键词 Disease Prevalence missing data Non-Participant Logistic Regression Model Prevalence Estimates HIV/AIDS
下载PDF
Study on the Missing Data Mechanisms and Imputation Methods
8
作者 Abdullah Z. Alruhaymi Charles J. Kim 《Open Journal of Statistics》 2021年第4期477-492,共16页
The absence of some data values in any observed dataset has been a real hindrance to achieving valid results in statistical research. This paper</span></span><span><span><span style="fo... The absence of some data values in any observed dataset has been a real hindrance to achieving valid results in statistical research. This paper</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">aim</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">ed</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> at the missing data widespread problem faced by analysts and statisticians in academia and professional environments. Some data-driven methods were studied to obtain accurate data. Projects that highly rely on data face this missing data problem. And since machine learning models are only as good as the data used to train them, the missing data problem has a real impact on the solutions developed for real-world problems. Therefore, in this dissertation, there is an attempt to solve this problem using different mechanisms. This is done by testing the effectiveness of both traditional and modern data imputation techniques by determining the loss of statistical power when these different approaches are used to tackle the missing data problem. At the end of this research dissertation, it should be easy to establish which methods are the best when handling the research problem. It is recommended that using Multivariate Imputation by Chained Equations (MICE) for MAR missingness is the best approach </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">to</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> dealing with missing data. 展开更多
关键词 missing data MECHANISMS Imputation Techniques MODELS
下载PDF
Random Subspace Sampling for Classification with Missing Data
9
作者 曹云浩 吴建鑫 《Journal of Computer Science & Technology》 SCIE EI CSCD 2024年第2期472-486,共15页
Many real-world datasets suffer from the unavoidable issue of missing values,and therefore classification with missing data has to be carefully handled since inadequate treatment of missing values will cause large err... Many real-world datasets suffer from the unavoidable issue of missing values,and therefore classification with missing data has to be carefully handled since inadequate treatment of missing values will cause large errors.In this paper,we propose a random subspace sampling method,RSS,by sampling missing items from the corresponding feature histogram distributions in random subspaces,which is effective and efficient at different levels of missing data.Unlike most established approaches,RSS does not train on fixed imputed datasets.Instead,we design a dynamic training strategy where the filled values change dynamically by resampling during training.Moreover,thanks to the sampling strategy,we design an ensemble testing strategy where we combine the results of multiple runs of a single model,which is more efficient and resource-saving than previous ensemble methods.Finally,we combine these two strategies with the random subspace method,which makes our estimations more robust and accurate.The effectiveness of the proposed RSS method is well validated by experimental studies. 展开更多
关键词 missing data random subspace neural network ensemble learning
原文传递
A Practical Approach for Missing Wireless Sensor Networks Data Recovery
10
作者 Song Xiaoxiang Guo Yan +1 位作者 Li Ning Ren Bing 《China Communications》 SCIE CSCD 2024年第5期202-217,共16页
In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and tra... In wireless sensor networks(WSNs),the performance of related applications is highly dependent on the quality of data collected.Unfortunately,missing data is almost inevitable in the process of data acquisition and transmission.Existing methods often rely on prior information such as low-rank characteristics or spatiotemporal correlation when recovering missing WSNs data.However,in realistic application scenarios,it is very difficult to obtain these prior information from incomplete data sets.Therefore,we aim to recover the missing WSNs data effectively while getting rid of the perplexity of prior information.By designing the corresponding measurement matrix that can capture the position of missing data and sparse representation matrix,a compressive sensing(CS)based missing data recovery model is established.Then,we design a comparison standard to select the best sparse representation basis and introduce average cross-correlation to examine the rationality of the established model.Furthermore,an improved fast matching pursuit algorithm is proposed to solve the model.Simulation results show that the proposed method can effectively recover the missing WSNs data. 展开更多
关键词 average cross correlation matching pursuit missing data wireless sensor networks
下载PDF
Optimal Estimation of High-Dimensional Covariance Matrices with Missing and Noisy Data
11
作者 Meiyin Wang Wanzhou Ye 《Advances in Pure Mathematics》 2024年第4期214-227,共14页
The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based o... The estimation of covariance matrices is very important in many fields, such as statistics. In real applications, data are frequently influenced by high dimensions and noise. However, most relevant studies are based on complete data. This paper studies the optimal estimation of high-dimensional covariance matrices based on missing and noisy sample under the norm. First, the model with sub-Gaussian additive noise is presented. The generalized sample covariance is then modified to define a hard thresholding estimator , and the minimax upper bound is derived. After that, the minimax lower bound is derived, and it is concluded that the estimator presented in this article is rate-optimal. Finally, numerical simulation analysis is performed. The result shows that for missing samples with sub-Gaussian noise, if the true covariance matrix is sparse, the hard thresholding estimator outperforms the traditional estimate method. 展开更多
关键词 High-Dimensional Covariance Matrix missing data Sub-Gaussian Noise Optimal Estimation
下载PDF
Comparison of two statistical methods for handling missing values of quantitative data in Bayesian N-of-1 trials: a simulation study
12
作者 Jing-Bo Zhai Tian-Ci Guo Wei-Jie Yu 《Medical Data Mining》 2024年第1期10-15,共6页
Background:Missing data are frequently occurred in clinical studies.Due to the development of precision medicine,there is an increased interest in N-of-1 trial.Bayesian models are one of main statistical methods for a... Background:Missing data are frequently occurred in clinical studies.Due to the development of precision medicine,there is an increased interest in N-of-1 trial.Bayesian models are one of main statistical methods for analyzing the data of N-of-1 trials.This simulation study aimed to compare two statistical methods for handling missing values of quantitative data in Bayesian N-of-1 trials.Methods:The simulated data of N-of-1 trials with different coefficients of autocorrelation,effect sizes and missing ratios are obtained by SAS 9.1 system.The missing values are filled with mean filling and regression filling respectively in the condition of different coefficients of autocorrelation,effect sizes and missing ratios by SPSS 25.0 software.Bayesian models are built to estimate the posterior means by Winbugs 14 software.Results:When the missing ratio is relatively small,e.g.5%,missing values have relatively little effect on the results.Therapeutic effects may be underestimated when the coefficient of autocorrelation increases and no filling is used.However,it may be overestimated when mean or regression filling is used,and the results after mean filling are closer to the actual effect than regression filling.In the case of moderate missing ratio,the estimated effect after mean filling is closer to the actual effect compared to regression filling.When a large missing ratio(20%)occurs,data missing can lead to significantly underestimate the effect.In this case,the estimated effect after regression filling is closer to the actual effect compared to mean filling.Conclusion:Data missing can affect the estimated therapeutic effects using Bayesian models in N-of-1 trials.The present study suggests that mean filling can be used under situation of missing ratio≤10%.Otherwise,regression filling may be preferable. 展开更多
关键词 N-of-1 trial BAYESIAN missing data simulation study
下载PDF
New Chain Imputation Methods for Estimating Population Mean in the Presence of Missing Data Using Two Auxiliary Variables
13
作者 Shashi Bhushan Abhay Pratap Pandey 《Communications in Mathematics and Statistics》 SCIE CSCD 2023年第2期325-340,共16页
This article deals with some new chain imputation methods by using two auxiliary variables under missing completely at random(MCAR)approach.The proposed generalized classes of chain imputation methods are tested from ... This article deals with some new chain imputation methods by using two auxiliary variables under missing completely at random(MCAR)approach.The proposed generalized classes of chain imputation methods are tested from the viewpoint of optimality in terms of MSE.The proposed imputation methods can be considered as an efficient extension to the work of Singh and Horn(Metrika 51:267-276,2000),Singh and Deo(Stat Pap 44:555-579,2003),Singh(Stat A J Theor Appl Stat 43(5):499-511,2009),Kadilar and Cingi(Commun Stat Theory Methods 37:2226-2236,2008)and Diana and Perri(Commun Stat Theory Methods 39:3245-3251,2010).The performance of the proposed chain imputation methods is investigated relative to the conventional chain-type imputation methods.The theoretical results are derived and comparative study is conducted and the results are found to be quite encouraging providing the improvement over the discussed work. 展开更多
关键词 missing data IMPUTATION MCAR
原文传递
RAD-seq data reveals robust phylogeny and morphological evolutionary history of Rhododendron
14
作者 Yuanting Shen Gang Yao +6 位作者 Yunfei Li Xiaoling Tian Shiming Li Nian Wang Chengjun Zhang Fei Wang Yongpeng Ma 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期866-878,共13页
Rhododendron is famous for its high ornamental value.However,the genus is taxonomically difficult and the relationships within Rhododendron remain unresolved.In addition,the origin of key morphological characters with... Rhododendron is famous for its high ornamental value.However,the genus is taxonomically difficult and the relationships within Rhododendron remain unresolved.In addition,the origin of key morphological characters with high horticulture value need to be explored.Both problems largely hinder utilization of germplasm resources.Most studies attempted to disentangle the phylogeny of Rhododendron,but only used a few genomic markers and lacked large-scale sampling,resulting in low clade support and contradictory phylogenetic signals.Here,we used restriction-site associated DNA sequencing(RAD-seq)data and morphological traits for 144 species of Rhododendron,representing all subgenera and most sections and subsections of this species-rich genus,to decipher its intricate evolutionary history and reconstruct ancestral state.Our results revealed high resolutions at subgenera and section levels of Rhododendron based on RAD-seq data.Both optimal phylogenetic tree and split tree recovered five lineages among Rhododendron.Subg.Therorhodion(cladeⅠ)formed the basal lineage.Subg.Tsutsusi and Azaleastrum formed cladeⅡand had sister relationships.CladeⅢincluded all scaly rhododendron species.Subg.Pentanthera(cladeⅣ)formed a sister group to Subg.Hymenanthes(cladeⅤ).The results of ancestral state reconstruction showed that Rhododendron ancestor was a deciduous woody plant with terminal inflorescence,ten stamens,leaf blade without scales and broadly funnelform corolla with pink or purple color.This study shows significant distinguishability to resolve the evolutionary history of Rhododendron based on high clade support of phylogenetic tree constructed by RAD-seq data.It also provides an example to resolve discordant signals in phylogenetic trees and demonstrates the application feasibility of RAD-seq with large amounts of missing data in deciphering intricate evolutionary relationships.Additionally,the reconstructed ancestral state of six important characters provides insights into the innovation of key characters in Rhododendron. 展开更多
关键词 RHODODENDRON RAD-seq missing data Quartet sampling(QS) Ancestral state reconstruction
下载PDF
Approximate Conditional Likelihood for Generalized Linear Models with General Missing Data Mechanism 被引量:7
15
作者 ZHAO Jiwei SHAO Jun 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2017年第1期139-153,共15页
The generalized linear model is an indispensable tool for analyzing non-Gaussian response data, with both canonical and non-canonical link functions comprehensively used. When missing values are present, many existing... The generalized linear model is an indispensable tool for analyzing non-Gaussian response data, with both canonical and non-canonical link functions comprehensively used. When missing values are present, many existing methods in the literature heavily depend on an unverifiable assumption of the missing data mechanism, and they fail when the assumption is violated. This paper proposes a missing data mechanism that is as generally applicable as possible, which includes both ignorable and nonignorable missing data cases, as well as both scenarios of missing values in response and covariate.Under this general missing data mechanism, the authors adopt an approximate conditional likelihood method to estimate unknown parameters. The authors rigorously establish the regularity conditions under which the unknown parameters are identifiable under the approximate conditional likelihood approach. For parameters that are identifiable, the authors prove the asymptotic normality of the estimators obtained by maximizing the approximate conditional likelihood. Some simulation studies are conducted to evaluate finite sample performance of the proposed estimators as well as estimators from some existing methods. Finally, the authors present a biomarker analysis in prostate cancer study to illustrate the proposed method. 展开更多
关键词 Asymptotic normality generalized linear model IDENTIFIABILITY missing data mechanism non-canonical link function nonignorable missingness.
原文传递
Semi-empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data 被引量:3
16
作者 Yong Song QIN Jun Chao ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第5期845-854,共10页
Detecting population (group) differences is useful in many applications, such as medical research. In this paper, we explore the probabilistic theory for identifying the quantile differences .between two populations... Detecting population (group) differences is useful in many applications, such as medical research. In this paper, we explore the probabilistic theory for identifying the quantile differences .between two populations. Suppose that there are two populations x and y with missing data on both of them, where x is nonparametric and y is parametric. We are interested in constructing confidence intervals on the quantile differences of x and y. Random hot deck imputation is used to fill in missing data. Semi-empirical likelihood confidence intervals on the differences are constructed. 展开更多
关键词 empirical likelihood confidence interval QUANTILE missing data hot deck imputation
原文传递
Data-driven Missing Data Imputation for Wind Farms Using Context Encoder 被引量:3
17
作者 Wenlong Liao Birgitte Bak-Jensen +2 位作者 Jayakrishnan Radhakrishna Pillai Dechang Yang Yusen Wang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第4期964-976,共13页
High-quality datasets are of paramount importance for the operation and planning of wind farms.However,the datasets collected by the supervisory control and data acquisition(SCADA)system may contain missing data due t... High-quality datasets are of paramount importance for the operation and planning of wind farms.However,the datasets collected by the supervisory control and data acquisition(SCADA)system may contain missing data due to various factors such as sensor failure and communication congestion.In this paper,a data-driven approach is proposed to fill the missing data of wind farms based on a context encoder(CE),which consists of an encoder,a decoder,and a discriminator.Through deep convolutional neural networks,the proposed method is able to automatically explore the complex nonlinear characteristics of the datasets that are difficult to be modeled explicitly.The proposed method can not only fully use the surrounding context information by the reconstructed loss,but also make filling data look real by the adversarial loss.In addition,the correlation among multiple missing attributes is taken into account by adjusting the format of input data.The simulation results show that CE performs better than traditional methods for the attributes of wind farms with hallmark characteristics such as large peaks,large valleys,and fast ramps.Moreover,the CE shows stronger generalization ability than traditional methods such as auto-encoder,K-means,k-nearest neighbor,back propagation neural network,cubic interpolation,and conditional generative adversarial network for different missing data scales. 展开更多
关键词 data-DRIVEN missing data imputation wind farm deep learning context encoder
原文传递
Data-driven fault diagnosis of control valve with missing data based on modeling and deep residual shrinkage network 被引量:3
18
作者 Feng SUN He XU +1 位作者 Yu-han ZHAO Yu-dong ZHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第4期303-313,共11页
A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is... A control valve is one of the most widely used machines in hydraulic systems.However,it often works in harsh environments and failure occurs from time to time.An intelligent and robust control valve fault diagnosis is therefore important for operation of the system.In this study,a fault diagnosis based on the mathematical model(MM)imputation and the modified deep residual shrinkage network(MDRSN)is proposed to solve the problem that data-driven models for control valves are susceptible to changing operating conditions and missing data.The multiple fault time-series samples of the control valve at different openings are collected for fault diagnosis to verify the effectiveness of the proposed method.The effects of the proposed method in missing data imputation and fault diagnosis are analyzed.Compared with random and k-nearest neighbor(KNN)imputation,the accuracies of MM-based imputation are improved by 17.87%and 21.18%,in the circumstances of a20.00%data missing rate at valve opening from 10%to 28%.Furthermore,the results show that the proposed MDRSN can maintain high fault diagnosis accuracy with missing data. 展开更多
关键词 Control valve missing data Fault diagnosis Mathematical model(MM) Deep residual shrinkage network(DRSN)
原文传递
Adjusted Empirical Likelihood Estimation of Distribution Function and Quantile with Nonignorable Missing Data 被引量:1
19
作者 DING Xianwen TANG Niansheng 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2018年第3期820-840,共21页
This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the H... This paper considers the estimation problem of distribution functions and quantiles with nonignorable missing response data. Three approaches are developed to estimate distribution functions and quantiles, i.e., the Horvtiz-Thompson-type method, regression imputation method and augmented inverse probability weighted approach. The propensity score is specified by a semiparametric expo- nential tilting model. To estimate the tilting parameter in the propensity score, the authors propose an adjusted empirical likelihood method to deal with the over-identified system. Under some regular conditions, the authors investigate the asymptotic properties of the proposed three estimators for distri- bution functions and quantiles, and find that these estimators have the same asymptotic variance. The jackknife method is employed to consistently estimate the asymptotic variances. Simulation studies are conducted to investigate the finite sample performance of the proposed methodologies. 展开更多
关键词 Adjusted empirical likelihood distribution estimation exponential tilting model nonig-norable missing data quantile.
原文传递
Empirical Likelihood Confidence Intervals for the Differences of Quantiles with Missing Data
20
作者 Yong-song Qin Yong-jiang Qian 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2009年第1期105-116,共12页
Suppose that there are two nonparametric populations x and y with missing data on both of them. We are interested in constructing confidence intervals on the quantile differences of x and y. Random imputation is used.... Suppose that there are two nonparametric populations x and y with missing data on both of them. We are interested in constructing confidence intervals on the quantile differences of x and y. Random imputation is used. Empirical likelihood confidence intervals on the differences are constructed. 展开更多
关键词 Empirical likelihood confidence Interval QUANTILE missing data IMPUTATION
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部