BACKGROUND Intestinal ischemia reperfusion(I/R)occurs in various diseases,such as trauma and intestinal transplantation.Excessive reactive oxygen species(ROS)accumulation and subsequent apoptotic cell death in intesti...BACKGROUND Intestinal ischemia reperfusion(I/R)occurs in various diseases,such as trauma and intestinal transplantation.Excessive reactive oxygen species(ROS)accumulation and subsequent apoptotic cell death in intestinal epithelia are important causes of I/R injury.PTEN-induced putative kinase 1(PINK1)and phosphorylation of dynamin-related protein 1(DRP1)are critical regulators of ROS and apoptosis.However,the correlation of PINK1 and DRP1 and their function in intestinal I/R injury have not been investigated.Thus,examining the PINK1/DRP1 pathway may help to identify a protective strategy and improve the patient prognosis.AIM To clarify the mechanism of the PINK1/DRP1 pathway in intestinal I/R injury.METHODS Male C57BL/6 mice were used to generate an intestinal I/R model via superior mesenteric artery occlusion followed by reperfusion.Chiu’s score was used to evaluate intestinal mucosa damage.The mitochondrial fission inhibitor mdivi-1 was administered by intraperitoneal injection.Caco-2 cells were incubated in vitro in hypoxia/reoxygenation conditions.Small interfering RNAs and overexpression plasmids were transfected to regulate PINK1 expression.The protein expression levels of PINK1,DRP1,p-DRP1 and cleaved caspase 3 were measured by Western blotting.Cell viability was evaluated using a Cell Counting Kit-8 assay and cell apoptosis was analyzed by TUNEL staining.Mitochondrial fission and ROS were tested by MitoTracker and MitoSOX respectively.RESULTS Intestinal I/R and Caco-2 cell hypoxia/reoxygenation decreased the expression of PINK1 and p-DRP1 Ser637.Pretreatment with mdivi-1 inhibited mitochondrial fission,ROS generation,and apoptosis and ameliorated cell injury in intestinal I/R.Upon PINK1 knockdown or overexpression in vitro,we found that p-DRP1 Ser637 expression and DRP1 recruitment to the mitochondria were associated with PINK1.Furthermore,we verified the physical combination of PINK1 and p-DRP1 Ser637.CONCLUSION PINK1 is correlated with mitochondrial fission and apoptosis by regulating DRP1 phosphorylation in intestinal I/R.These results suggest that the PINK1/DRP1 pathway is involved in intestinal I/R injury,and provide a new approach for prevention and treatment.展开更多
Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings.Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia.Dynamin-related protein 1(Drp1)regulates ...Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings.Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia.Dynamin-related protein 1(Drp1)regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications,which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury.However,there is active controversy and gaps in knowledge regarding the modification,protein interaction,and functions of Drp1,which both hinder and promote development of Drp1 as a novel therapeutic target.Here,we summarize recent findings on the oligomeric changes,modification types,and protein interactions of Drp1 in various hypoxic-ischemic diseases,as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia.Additionally,potential clinical translation prospects for targeting Drp1 are discussed.This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.展开更多
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynami...Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.展开更多
Background Increasing research suggests that mitochondrial defect plays a major role in pulmonary hypertension(PH) pathogenesis. Mitochondrial dynamics and quality control have a central role in the maintenance of the...Background Increasing research suggests that mitochondrial defect plays a major role in pulmonary hypertension(PH) pathogenesis. Mitochondrial dynamics and quality control have a central role in the maintenance of the cell proliferation and apoptosis balance. However, the molecular mechanism underlying of this balance is still unknown. Methods To clarify the biological effects of hypoxic air exposure and hypoxia-inducible factor-1α(HIF-1α) on pulmonary arterial smooth muscle cell(PASMC) and pulmonary arterial hypertension rats, the cells were cultured in a hypoxic chamber under oxygen concentrations. Cell viability, reactive oxygen species level, cell death, mitochondrial morphology, mitochondrial membrane potential, mitochondrial function and mitochondrial biosynthesis, as well as fission-and fusion-related proteins, were measured under hypoxic conditions. In addition, rats were maintained under hypoxic conditions, and the right ventricular systolic pressure, right ventricular hypertrophy index and right ventricular weight/body weight ratio were examined and recorded. Further, we assessed the role of HIF-1α in the development and progression of PH using HIF-1α gene knockdown using small interfering RNA transfection. Mdivi-1 treatment was performed before hypoxia to inhibit dynamin-related protein 1(Drp1). Results We found that HIF-1α expression was increased during hypoxia, which was crucial for hypoxia-induced mitochondrial dysfunction and hypoxia-stimulated PASMCs proliferation and apoptosis. We also found that targeting mitochondrial fission Drp1 by mitochondrial division inhibitor Mdivi-1 was effective in PH model rats. The results showed that mitochondrial dynamics were involved in the pulmonary vascular remodeling under hypoxia in vivo and in vitro. Furthermore, HIF-1α also modulated mitochondrial dynamics in pulmonary vascular remodeling under hypoxia through directly regulating the expression of Drp1. Conclusions In conclusion, our data suggests that abnormal mitochondrial dynamics could be a marker for the early diagnosis of PH and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in PH.展开更多
Mitochondrial division inhibitor 1(Mdivi-1) is a selective cell-permeable inhibitor of dynamin-related protein-1(Drp1) and mitochondrial division.To investigate the effect of Mdivi-1 on cells treated with glutamat...Mitochondrial division inhibitor 1(Mdivi-1) is a selective cell-permeable inhibitor of dynamin-related protein-1(Drp1) and mitochondrial division.To investigate the effect of Mdivi-1 on cells treated with glutamate,cerebral cortex neurons isolated from neonatal rats were treated with 10 m M glutamate for 24 hours.Normal cultured cells and dimethyl sulfoxide-cultured cells were considered as controls.Apoptotic cells were detected by flow cytometry.Changes in mitochondrial morphology were examined by electron microscopy.Drp1,Bax,and casp ase-3 expression was evaluated by western blot assays and immunocytochemistry.Mitochondrial membrane potential was detected using the JC-1 probe.Twenty-four hours after 10 m M glutamate treatment,Drp1,Bax and caspase-3 expression was upregulated,Drp1 and Bax were translocated to mitochondria,mitochondrial membrane potential was decreased and the rate of apoptosis was increased.These effects were inhibited by treatment with 50 μM Mdivi-1 for 2 hours.This finding indicates that Mdivi-1 is a candidate neuroprotective drug that can potentially mitigate against neuronal injury caused by glutamate-induced excitotoxicity.展开更多
Objective:To investigate the effects of silkworm pupa(Bombyx mori) protein(SPP) on cell proliferation,apoptosis and energy metabolism in human colon cancer cells DLD-1.Methods:CCK-8 was used to detect cell proliferati...Objective:To investigate the effects of silkworm pupa(Bombyx mori) protein(SPP) on cell proliferation,apoptosis and energy metabolism in human colon cancer cells DLD-1.Methods:CCK-8 was used to detect cell proliferation rate after 72 h of cell culture for the control group(normal cultured DLD-1 cells) and SPP dose groups;Annexin-V/PI was applied to observe cell apoptosis;XFe24 Extracellular Flux Analyzer was used to detect cell mitochondrial respiratory function and glycolytic function.Results:Comparing with the control,SPP significantly inhibited the proliferation of DLD-1 cells with all the dosage tested(P <0.01);flow cytometry showed that SPP significantly promoted apoptosis(P<0.05).Additionally,SPP could significantly inhibited mitochondrial metabolism and glycolysis of DLD-1 cells and decreased cell energy metabolism in all groups treated with different doses.Conclusion:SPP can cause oxidative damage,promote apoptosis,and reduce mitochondrial respiratory and glycolysis rate in colon cancer DLD-1 cells,which reveals that SPP has the potential to serve as the anti-cancer drugs in the future,but further experimental evidence is needed.展开更多
Dynamin-related protein 1属于动力蛋白GTP酶超家族,是线粒体分裂体系的组成成分,在线粒体分裂中具有重要作用。在不同物种中,dynamin-related protein 1在与多种分子相互作用后,可以定位于线粒体并组装成高级结构,引起膜的收缩和分裂...Dynamin-related protein 1属于动力蛋白GTP酶超家族,是线粒体分裂体系的组成成分,在线粒体分裂中具有重要作用。在不同物种中,dynamin-related protein 1在与多种分子相互作用后,可以定位于线粒体并组装成高级结构,引起膜的收缩和分裂。Dynamin-related protein 1功能的消失会增强线粒体的融合和线粒体之间的连通性。Dynamin-related protein 1在细胞凋亡等多种细胞功能中也具有重要作用。展开更多
Bone homeostasis relies on the dynamic balance of osteoblast mediated bone construction and osteoclast-based bone resorption processes,which has been reported to be controlled by various mineral ions.However,there is ...Bone homeostasis relies on the dynamic balance of osteoblast mediated bone construction and osteoclast-based bone resorption processes,which has been reported to be controlled by various mineral ions.However,there is no direct evidence of the effect and the underlying mechanism of high salt stimulation on bone metabolism.In this study,we demonstrated that high salt stimulation promoted excessive mitochondrial fission mediated by dynamin-related protein 1 in mesenchymal stem cells,which resulted in impaired mitochondrial morphology and function.Consequently,this impairment hindered the bone formation of mesenchymal stem cells,resulting in osteopenia in mice.Mechanically,the impaired property of mesenchymal stem cells which was caused by high salt was controlled by dynamin-related protein 1 mediated mitochondrial fission,which inhibited the classical Wnt signaling pathway.Furthermore,the osteogenic property of mesenchymal stem cells decreased by high salt could be restored by exosomes to transfer the mitochondrial DNA into the impaired mesenchymal stem cells.This study provides not only new strategies for promoting bone regeneration but also new insights into the effect and mechanism of exosome-mediated delivery.展开更多
近年来沉默信息调节蛋白1(silent information regulator protein 1,Sirt1)作为一种保护分子被广泛地研究,其中Sirt1对线粒体功能的调节更是关注的焦点。而线粒体功能障碍又是造成缺血再灌注损伤(ischemia-reperfusion injury,IRI)的关...近年来沉默信息调节蛋白1(silent information regulator protein 1,Sirt1)作为一种保护分子被广泛地研究,其中Sirt1对线粒体功能的调节更是关注的焦点。而线粒体功能障碍又是造成缺血再灌注损伤(ischemia-reperfusion injury,IRI)的关键因素,因此Sirt1与IRI的关系也成为了研究的热点。本文主要从Sirt1增强线粒体抗氧化能力、增加线粒体的生物合成以及抗凋亡等方面论述Sirt1-线粒体途径减轻IRI的相关作用机制。靶向线粒体功能调节将成为减轻IRI的一项重要措施。展开更多
基金the National Natural Science Foundation of China,No.81679154,No.81871547.
文摘BACKGROUND Intestinal ischemia reperfusion(I/R)occurs in various diseases,such as trauma and intestinal transplantation.Excessive reactive oxygen species(ROS)accumulation and subsequent apoptotic cell death in intestinal epithelia are important causes of I/R injury.PTEN-induced putative kinase 1(PINK1)and phosphorylation of dynamin-related protein 1(DRP1)are critical regulators of ROS and apoptosis.However,the correlation of PINK1 and DRP1 and their function in intestinal I/R injury have not been investigated.Thus,examining the PINK1/DRP1 pathway may help to identify a protective strategy and improve the patient prognosis.AIM To clarify the mechanism of the PINK1/DRP1 pathway in intestinal I/R injury.METHODS Male C57BL/6 mice were used to generate an intestinal I/R model via superior mesenteric artery occlusion followed by reperfusion.Chiu’s score was used to evaluate intestinal mucosa damage.The mitochondrial fission inhibitor mdivi-1 was administered by intraperitoneal injection.Caco-2 cells were incubated in vitro in hypoxia/reoxygenation conditions.Small interfering RNAs and overexpression plasmids were transfected to regulate PINK1 expression.The protein expression levels of PINK1,DRP1,p-DRP1 and cleaved caspase 3 were measured by Western blotting.Cell viability was evaluated using a Cell Counting Kit-8 assay and cell apoptosis was analyzed by TUNEL staining.Mitochondrial fission and ROS were tested by MitoTracker and MitoSOX respectively.RESULTS Intestinal I/R and Caco-2 cell hypoxia/reoxygenation decreased the expression of PINK1 and p-DRP1 Ser637.Pretreatment with mdivi-1 inhibited mitochondrial fission,ROS generation,and apoptosis and ameliorated cell injury in intestinal I/R.Upon PINK1 knockdown or overexpression in vitro,we found that p-DRP1 Ser637 expression and DRP1 recruitment to the mitochondria were associated with PINK1.Furthermore,we verified the physical combination of PINK1 and p-DRP1 Ser637.CONCLUSION PINK1 is correlated with mitochondrial fission and apoptosis by regulating DRP1 phosphorylation in intestinal I/R.These results suggest that the PINK1/DRP1 pathway is involved in intestinal I/R injury,and provide a new approach for prevention and treatment.
基金This work was supported by the National Natural Science Foundation of China(82272252,82270378)the Senior Medical Talents Program of Chongqing for Young and Middle-agedthe Kuanren Talents Program of the Second Affiliated Hospital of Chongqing Medical University.
文摘Hypoxic-ischemic injury is a common pathological dysfunction in clinical settings.Mitochondria are sensitive organelles that are readily damaged following ischemia and hypoxia.Dynamin-related protein 1(Drp1)regulates mitochondrial quality and cellular functions via its oligomeric changes and multiple modifications,which plays a role in mediating the induction of multiple organ damage during hypoxic-ischemic injury.However,there is active controversy and gaps in knowledge regarding the modification,protein interaction,and functions of Drp1,which both hinder and promote development of Drp1 as a novel therapeutic target.Here,we summarize recent findings on the oligomeric changes,modification types,and protein interactions of Drp1 in various hypoxic-ischemic diseases,as well as the Drp1-mediated regulation of mitochondrial quality and cell functions following ischemia and hypoxia.Additionally,potential clinical translation prospects for targeting Drp1 are discussed.This review provides new ideas and targets for proactive interventions on multiple organ damage induced by various hypoxic-ischemic diseases.
基金supported by the Natural Science Foundation of Shandong Province of China,No.ZR2015HM023a grant from the Science and Technology Plan Project of Shinan District of Qingdao City of China,No.2016-3-029-YY
文摘Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.
基金supported by the National Natural Science Foundation of China (No. 81673858, No. 81704062, No. 30500644)the Science and Technology Project of Traditional Chinese Medicine in Hunan (No. 2009045, No. 2012027)the Program for National Center for Clinical Medicine for Geriatric Diseases (Ministry of Science and Technology)
文摘Background Increasing research suggests that mitochondrial defect plays a major role in pulmonary hypertension(PH) pathogenesis. Mitochondrial dynamics and quality control have a central role in the maintenance of the cell proliferation and apoptosis balance. However, the molecular mechanism underlying of this balance is still unknown. Methods To clarify the biological effects of hypoxic air exposure and hypoxia-inducible factor-1α(HIF-1α) on pulmonary arterial smooth muscle cell(PASMC) and pulmonary arterial hypertension rats, the cells were cultured in a hypoxic chamber under oxygen concentrations. Cell viability, reactive oxygen species level, cell death, mitochondrial morphology, mitochondrial membrane potential, mitochondrial function and mitochondrial biosynthesis, as well as fission-and fusion-related proteins, were measured under hypoxic conditions. In addition, rats were maintained under hypoxic conditions, and the right ventricular systolic pressure, right ventricular hypertrophy index and right ventricular weight/body weight ratio were examined and recorded. Further, we assessed the role of HIF-1α in the development and progression of PH using HIF-1α gene knockdown using small interfering RNA transfection. Mdivi-1 treatment was performed before hypoxia to inhibit dynamin-related protein 1(Drp1). Results We found that HIF-1α expression was increased during hypoxia, which was crucial for hypoxia-induced mitochondrial dysfunction and hypoxia-stimulated PASMCs proliferation and apoptosis. We also found that targeting mitochondrial fission Drp1 by mitochondrial division inhibitor Mdivi-1 was effective in PH model rats. The results showed that mitochondrial dynamics were involved in the pulmonary vascular remodeling under hypoxia in vivo and in vitro. Furthermore, HIF-1α also modulated mitochondrial dynamics in pulmonary vascular remodeling under hypoxia through directly regulating the expression of Drp1. Conclusions In conclusion, our data suggests that abnormal mitochondrial dynamics could be a marker for the early diagnosis of PH and monitoring disease progression. Further research is needed to study the signaling pathways that govern mitochondrial fission/fusion in PH.
基金supported by the National Natural Science Foundation of China,No.81371967 and 81401807a grant from the 5th Phase of "Project 333"of Jiangsu Province of China,No.BRA2016512a grant from the Six Talent Peaks Project of Jiangsu Province of China,No.2014-WSN-012
文摘Mitochondrial division inhibitor 1(Mdivi-1) is a selective cell-permeable inhibitor of dynamin-related protein-1(Drp1) and mitochondrial division.To investigate the effect of Mdivi-1 on cells treated with glutamate,cerebral cortex neurons isolated from neonatal rats were treated with 10 m M glutamate for 24 hours.Normal cultured cells and dimethyl sulfoxide-cultured cells were considered as controls.Apoptotic cells were detected by flow cytometry.Changes in mitochondrial morphology were examined by electron microscopy.Drp1,Bax,and casp ase-3 expression was evaluated by western blot assays and immunocytochemistry.Mitochondrial membrane potential was detected using the JC-1 probe.Twenty-four hours after 10 m M glutamate treatment,Drp1,Bax and caspase-3 expression was upregulated,Drp1 and Bax were translocated to mitochondria,mitochondrial membrane potential was decreased and the rate of apoptosis was increased.These effects were inhibited by treatment with 50 μM Mdivi-1 for 2 hours.This finding indicates that Mdivi-1 is a candidate neuroprotective drug that can potentially mitigate against neuronal injury caused by glutamate-induced excitotoxicity.
文摘Objective:To investigate the effects of silkworm pupa(Bombyx mori) protein(SPP) on cell proliferation,apoptosis and energy metabolism in human colon cancer cells DLD-1.Methods:CCK-8 was used to detect cell proliferation rate after 72 h of cell culture for the control group(normal cultured DLD-1 cells) and SPP dose groups;Annexin-V/PI was applied to observe cell apoptosis;XFe24 Extracellular Flux Analyzer was used to detect cell mitochondrial respiratory function and glycolytic function.Results:Comparing with the control,SPP significantly inhibited the proliferation of DLD-1 cells with all the dosage tested(P <0.01);flow cytometry showed that SPP significantly promoted apoptosis(P<0.05).Additionally,SPP could significantly inhibited mitochondrial metabolism and glycolysis of DLD-1 cells and decreased cell energy metabolism in all groups treated with different doses.Conclusion:SPP can cause oxidative damage,promote apoptosis,and reduce mitochondrial respiratory and glycolysis rate in colon cancer DLD-1 cells,which reveals that SPP has the potential to serve as the anti-cancer drugs in the future,but further experimental evidence is needed.
文摘Dynamin-related protein 1属于动力蛋白GTP酶超家族,是线粒体分裂体系的组成成分,在线粒体分裂中具有重要作用。在不同物种中,dynamin-related protein 1在与多种分子相互作用后,可以定位于线粒体并组装成高级结构,引起膜的收缩和分裂。Dynamin-related protein 1功能的消失会增强线粒体的融合和线粒体之间的连通性。Dynamin-related protein 1在细胞凋亡等多种细胞功能中也具有重要作用。
基金supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China(No.2022YFA1105800)the National Natural Science Foundation of China(No.81970940(R.L.Y.))+1 种基金Research Foundation of Peking University School and Hospital of Stomatology(No.PKUSS20230103)Postdoctoral Fellowship Program of China Postdoctoral Science Foundation(No.GZC20230136).
文摘Bone homeostasis relies on the dynamic balance of osteoblast mediated bone construction and osteoclast-based bone resorption processes,which has been reported to be controlled by various mineral ions.However,there is no direct evidence of the effect and the underlying mechanism of high salt stimulation on bone metabolism.In this study,we demonstrated that high salt stimulation promoted excessive mitochondrial fission mediated by dynamin-related protein 1 in mesenchymal stem cells,which resulted in impaired mitochondrial morphology and function.Consequently,this impairment hindered the bone formation of mesenchymal stem cells,resulting in osteopenia in mice.Mechanically,the impaired property of mesenchymal stem cells which was caused by high salt was controlled by dynamin-related protein 1 mediated mitochondrial fission,which inhibited the classical Wnt signaling pathway.Furthermore,the osteogenic property of mesenchymal stem cells decreased by high salt could be restored by exosomes to transfer the mitochondrial DNA into the impaired mesenchymal stem cells.This study provides not only new strategies for promoting bone regeneration but also new insights into the effect and mechanism of exosome-mediated delivery.
文摘近年来沉默信息调节蛋白1(silent information regulator protein 1,Sirt1)作为一种保护分子被广泛地研究,其中Sirt1对线粒体功能的调节更是关注的焦点。而线粒体功能障碍又是造成缺血再灌注损伤(ischemia-reperfusion injury,IRI)的关键因素,因此Sirt1与IRI的关系也成为了研究的热点。本文主要从Sirt1增强线粒体抗氧化能力、增加线粒体的生物合成以及抗凋亡等方面论述Sirt1-线粒体途径减轻IRI的相关作用机制。靶向线粒体功能调节将成为减轻IRI的一项重要措施。