It has been reported that transplantation of pheochromocytoma P12 and hepatoma cells’ mitochondria improve the locomotive activity and prevent disease progress in experimental Parkinson’s disease rats. To prepare fo...It has been reported that transplantation of pheochromocytoma P12 and hepatoma cells’ mitochondria improve the locomotive activity and prevent disease progress in experimental Parkinson’s disease rats. To prepare for mitochondrial transplantation study in human neurodegenerative diseases, we select human fibroblasts as mitochondrial donor because that fibroblasts share many characteristics with mesenchymal stromal cells (MSCs). We isolate human primary fibroblasts and develop a mitochondrial DNA (mtDNA)-depleted mouse motor neuron NSC-34 cells (NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells). Fibroblast and NSC-34 cell’s mitochondria are co-cultured with NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells. Mitochondrial transplantation is observed by fluorescent microscopy. Gene expression is determined by polymerase chain reaction (PCR) and real time PCR (qPCR). Also, mitochondria are injected to mice bearing mammary adenocarcinoma 4T1 cells. We find results as following: 1) There are abundant mitochondria in fibroblasts (337 ± 80 mitochondria per fibroblast). 42.4% of viable mitochondria are obtained by using differential centrifugation. The isolated mitochondria actively transplant into NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells after co-culture. 2) Fibroblasts transfer mitochondria to human mammary adenocarcinoma MCF-7 cells. 3) There is no expression of HLA-I antigen in fibroblast’s mitochondria indicating they can be used for allogeneic mitochondrial transplantation without HLA antigen match. 4) PCR and qPCR show that NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells lose mitochondrially encoded cytochrome c oxidase I (MT-CO1) and mitochondrially encoded NADH dehydrogenase 1 (MT-ND1) and upregulate expression of glycolysis-associated genes hexokinase (HK2), glucose transporter 1 (SLC2A1) and lactate dehydrogenase A (LDHA). 5) Transplantation of NSC-34 mitochondria restores MT-CO1 and MT-ND1 and downregulates gene expression of HK2, SLC2A1 and LDHA. 6) Normal mammary epithelial mitochondria successfully enter to 4T1 cells in mice. Subcutaneous injection of mitochondria is safe for mice. In summary, mitochondrial transplantation replenishes mtDNA and rescues aerobic respiration of diseased cells with mitochondrial dysfunction. Human primary fibroblasts are potential mitochondrial donor for mitochondrial transplantation study in human neurodegenerative diseases.展开更多
AIM:To study the nuclear microsatellite instability (nMSI) at BAT26 and mitochondral microsalellite instability (mtMSI) in the occurrence and development of hepatocellular carcinoma and the relationship between nMSI ...AIM:To study the nuclear microsatellite instability (nMSI) at BAT26 and mitochondral microsalellite instability (mtMSI) in the occurrence and development of hepatocellular carcinoma and the relationship between nMSI and mtMSI.METHODS: nMSI was observed with PCR and mtMSI with PCR-SSCP in 52 cases of hepatocellular carcinoma.RESULTS:mtMSI was detected in 11 out of the 52 cases of hepatocellular carcinoma (21.2%). Among the 11 cases of hepatocellular carcinoma with mtMSI, 7 occured in one locus and 4 in 2 loci. The frequency of mtMSI in the 52 cases of hepatocellular carcinoma showed no correlation to sex, age,infection of hepatitis B, liver cirrhosis as well as positive AFP of the patients (P>0.05). In addition, nMSI was detected in 3 out of 52 cases of hepatocellular carcinoma (5.8%) and there was no correlation of the incidence of mtMSI to that of nMSI (P>0.05).CONCLUSION:mtMSI may be involved in the coccurrence and development of hepatocellular carcinoma and it is independent of nMSI.展开更多
OBJECTIVE To compare the differences of mitochondrial DNA (mtDNA) copies among the tissues of esophageal squamous cell carcinoma (ESCC), para-neoplastic tissue and normal mucous membrane of the esophagus, and to study...OBJECTIVE To compare the differences of mitochondrial DNA (mtDNA) copies among the tissues of esophageal squamous cell carcinoma (ESCC), para-neoplastic tissue and normal mucous membrane of the esophagus, and to study the relationship between the mtDNA and the occurrence and devel- opment of esophageal squamous cell carcinoma. METHODS The mtDNA copies of 42 specimens with the ESCC, paraneoplastic mucous tissue and normal mucous membrane of the esophagus were determined using real-time fluorescence quantitative PCR. The mtDNA was analyzed using agarose gel electrophoresis. RESULTS The mtDNA from all of the tissues (42/42) from the ESCC, para-neoplastic tissue and normal esophageal mucous membranes was analyzed, showing that there were an average mtDNA copy number of 27.1894×106 μg DNA, 9.4102×106 μg DNA and 5.9347×106 μg DNA, from the respective tissues. There were signifi cant differences (F=27.83, P<0.05) in mtDNA copy number among the three. A positive band was shown at 403 bp after gel electrophoresis of the PCR products, and the lane where the ESCC mtDNA located was rather bright, which was in accordance with the result of the real-time PCR determination. CONCLUSION An increase in the mtDNA copy number is related to the occurrence and development of ESCC.展开更多
Nonalcoholic fatty liver disease(NAFLD) is the most common liver disease worldwide, affecting approximately one third of the Western world. It consists of a wide spectrum of liver disorders, ranging from fatty liver t...Nonalcoholic fatty liver disease(NAFLD) is the most common liver disease worldwide, affecting approximately one third of the Western world. It consists of a wide spectrum of liver disorders, ranging from fatty liver to nonalcoholic steatohepatitis(NASH), which consists of steatosis, ballooning injury and inflammation. Despite an alarming growth in the statistics surrounding NAFLD, there are as yet no effective therapies for its treatment. Innate immune signaling has been thought to play a significant role in initiating and augmenting hepatic inflammation, contributing to the transition from nonalcoholic fatty liver to NASH. An immune response is triggered by countless signals called damage-associated molecular patterns(DAMPs) elicited by lipid-laden and damaged hepatocytes, which are recognized by pattern recognition receptors(PRRs) on hepatic immune cells to initiate inflammatory signaling. In this editorial, in addition to summarizing innate immune signaling in NAFLD and discussing potential therapies that target innate immune pathways, we have described a recent study that demonstrated that mitochondrial DNA serves as a DAMP activating a hepatic PRR, TLR9, in mice and in the plasma of NASH patients. In addition to identifying a new ligand for TLR9 during NASH progression, the study shows that blocking TLR9 reverses NASH, paving the way for the development of future NASH therapy.展开更多
Phosphatidylglycerol (PG) an important membrane phospholipid required for the synthesis of diphos-phatidylglycerol (DPG) commonly known as cardiolipin (CL) was identified in the fraction of endo-plasmic reticulum (ER)...Phosphatidylglycerol (PG) an important membrane phospholipid required for the synthesis of diphos-phatidylglycerol (DPG) commonly known as cardiolipin (CL) was identified in the fraction of endo-plasmic reticulum (ER)-derived transport vesicles which had no affinity for Golgi. The vesicles were produced in the presence of Brefeldin A (BFA), the agent known to inhibit ER-Golgi transport, and found to display affinity to mitochondria. The analysis revealed that their cargo was not containing proteins that are transported to Golgi, and that their membrane was free of phosphatidylinositol (PI) and ceramides (Cer). The incubation of PG-containing transport vesicles with mitochondria afforded incorporation of their membrane into the Outer Mito-chondrial Membrane (OMM) and formation of lyso-phosphatidylglycerol (LPG). In turn, upon further incubation with fresh transport active cytosol, the mitochondrial LPG was converted to PG. The results of analysis of the OMM, Inner Mitochondrial Mem-brane (IMM) and Inner Mitochondrial Space Components (IMSC) strongly suggest that PG-containing transport vesicles deliver nuclear DNA translation products to the IMSC and thus facilitate CL synthesis in the IMM. In summary, our studies provide evidence that ER-generated PG-enriched transport vesicles represent the general pathway for restitution of mitochondrial membranes and the delivery of nuclear DNA translation products that generate CL, and thus sustain the mitochondrial matrix CL-dependent metabolic reactions.展开更多
Leber’s hereditary optic neuropathy(LHON)is a debilitating mitochondrial disease associated with mutations in mitochondrial DNA(mtDNA).Unfortunately,the available treatment options for LHON patients are limited due t...Leber’s hereditary optic neuropathy(LHON)is a debilitating mitochondrial disease associated with mutations in mitochondrial DNA(mtDNA).Unfortunately,the available treatment options for LHON patients are limited due to challenges in mitochondrial replacement.In our study,we reprogramming LHON urine cells into induced pluripotent stem cells(iPSCs)and differentiating them into neural progenitor cells(NPCs)and neurons for disease modeling.Our research revealed that LHON neurons exhibited significantly higher levels of mtDNA mutations and reduced mitochondrial function,confirming the disease phenotype.However,through co-culturing LHON iPSC-derived NPCs with mesenchymal stem cells(MSCs),we observed a remarkable rescue of mutant mtDNA and a significant improvement in mitochondrial metabolic function in LHON neurons.These findings suggest that co-culturing with MSCs can enhance mitochondrial function in LHON NPCs,even after their differentiation into neurons.This discovery holds promise as a potential therapeutic strategy for LHON patients.展开更多
Objective:To investigate the effect of Chinese medicine Compound Weichang'an(胃肠安)for invig-orating the spleen on apoptosis of gastric cancer SGC7901 cells and its possible mechanism.Methods:The gas-trie cancer ...Objective:To investigate the effect of Chinese medicine Compound Weichang'an(胃肠安)for invig-orating the spleen on apoptosis of gastric cancer SGC7901 cells and its possible mechanism.Methods:The gas-trie cancer SGC-7901 cells were divided into different mass concentration groups(0 mg·L^(-1),500 mg·L^(-1)1000 mg·L^(-1),1500 mg·L^(-1),2000 mg·L^(-1)).CCK8 and monoclonal test were applied to detect prolifera-tion ability;comet assay was used to detect DNA damage.After DCFH-DA fluorescent labeling,the level of ROS activity was detected by flow cytometer;after AnnexinV-FTC/PI double labeling,the proportion of apoptotic ellls was detected by flow cytometer;after JC-1 staining,the mi tochondri almembrane potential was detected by flow cytometer;after FTTC-DEVD-FMK staining,the ratio of Caspase activity was detected by flow cytometer.Results:Weichang an inhibited cell proliferation and reduced cell colony formation in a time-dose-dependent manner;the results of comet electrophoresis showed that Weichang'an could induce DNA damage in gastric cancer cells;com-pared with control group.the ratio of Weichang'an's intervention with the apoptosis of gastric cancer cells in-creased(P<0.05),the mitochondrial membrane potential decreased(P<0.05),the activity of Caspase3 and Caspase9 increased(P<0.05),and the intracellular ROS level increased(P<0.05).Among them,the effect of Weichang'an treatment group(1000 mg·L^(-1))was the most significant.Conclusion:Weichang'an has an inhibi-tory effect on the proliferation of gastric cancer SGC7901 cells and can induce cell apoptosis.Its mechanism may be related with the ROS-mediated pathway of mitochondrial apoptosis and DNA damage.展开更多
Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved...Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.展开更多
Tree shrews(Tupaia belangeri chinensis)share a close relationship to primates and have been widely used in biomedical research.We previously established a spermatogonial stem cell(SSC)-based gene editing platform to g...Tree shrews(Tupaia belangeri chinensis)share a close relationship to primates and have been widely used in biomedical research.We previously established a spermatogonial stem cell(SSC)-based gene editing platform to generate transgenic tree shrews.However,the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear.Here,we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages.We found that SSCs lost spermatogenesis ability after long-term expansion(>50 passages),as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia(SPG)-derivedspermatocytesor spermatids marking spermatogenesis.RNA sequencing(RNA-seq)analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers.Specifically,DNA damage response and repair genes(e.g.,MRE11,SMC3,BLM,and GEN1)were down-regulated,whereas genes associated with mitochondrial function(e.g.,NDUFA9,NDUFA8,NDUFA13,and NDUFB8)were up-regulated after expansion.The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells.Supplementation with nicotinamide adenine dinucleotide(NAD+)precursor nicotinamide riboside(NR)exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture.Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.展开更多
Objective: To ascertain the variations of mitochondrion DNA (mtDNA) in mouse tumors and to inquire into the relationship between mutations of mtDNA and carcinogenesis Methods: The variations of D-loop, ND3 and tRN...Objective: To ascertain the variations of mitochondrion DNA (mtDNA) in mouse tumors and to inquire into the relationship between mutations of mtDNA and carcinogenesis Methods: The variations of D-loop, ND3 and tRNA^Met+Glu+Ile gene fragments of mtDNA from six tumor cell lines of mice were analyzed by PCR technology with restriction fragment length polymorphism analysis (polymerase chain reaction-restriction fragment length polymorphism, PCR-RFLP) and single strand conformation polymorphism analysis (SSCP-PCR) method. Results: ND3 and tRNA^Met+Glu+Ile gene fragments ofmtDNA from the tumors showed no variation in 27 endonuclease sites; D-loop ofmtDNA from Hca-F had an additional endonuclease sites of Hinf I in contrast to that of the inbred mouse. Deeply analyzed by PCR-SSCP, the D-loop ofmtDNA was found to possess mutations in 4 of 6 tumors. Conclusion: D-loop is the hot spot of tumor mtDNA mutation which can act as contributors to the carcinogenic展开更多
Exposure to ionizing radiation,a physical treatment that inactivates live tumor cells,has been extensively applied to enhance the antitumor responses induced by cancer cell vaccines in both animal research and human c...Exposure to ionizing radiation,a physical treatment that inactivates live tumor cells,has been extensively applied to enhance the antitumor responses induced by cancer cell vaccines in both animal research and human clinical trials.However,the mechanisms by which irradiated cells function as immunogenic tumor vaccines and induce effective antitumor responses have not been fully explored.Here,we demonstrate that oxidized mitochondrial DNA(mtDNA)and stimulator of interferon genes(STING)signaling play a key roles in the enhanced antitumor effect achieved with an irradiated tumor cell vaccine.Elevations in ROS and oxidized mtDNA 8-OHG content could be induced in irradiated tumor cells.Oxidized mtDNA derived from irradiated tumor cells gained access to the cytosol of dendritic cells(DCs).Oxidized mtDNA,as a DAMP or adjuvant,activated the STING-TBK1-IRF3-IFN-β pathway in DCs,which subsequently cross-presented irradiated tumor cell-derived antigens to CD8^(+)T cells and elicited antitumor immunity.The results of our study provide insight into the mechanism by which an irradiated cell vaccine mediates antitumor immunity,which may have implications for new strategies to improve the efficacy of irradiated vaccines.展开更多
Mitochondrion is a semi-autonomous organelle,important for cell energy metabolism,apoptosis,the production of reactive oxygen species(ROS),and Ca2+homeostasis.Mitochondrial DNA(mtDNA)mutation is one of the primary fac...Mitochondrion is a semi-autonomous organelle,important for cell energy metabolism,apoptosis,the production of reactive oxygen species(ROS),and Ca2+homeostasis.Mitochondrial DNA(mtDNA)mutation is one of the primary factors in mitochondrial disorders.Though much progress has been made,there remain many difficulties in constructing cell models for mitochondrial diseases.This seriously restricts studies related to targeted drug discovery and the mechanism and therapy for such diseases.Here we summarize the characteristics of patient-specific immortalized lymphoblastoid cells,fibroblastoid cells,cytoplasmic hybrid(cybrid)cell lines,and induced pluripotent stem cells(iPSCs)-derived differentiation cells in the study of mitochondrial disorders,as well as offering discussion of roles and advances of these cell models,particularly in the screening of drugs.展开更多
文摘It has been reported that transplantation of pheochromocytoma P12 and hepatoma cells’ mitochondria improve the locomotive activity and prevent disease progress in experimental Parkinson’s disease rats. To prepare for mitochondrial transplantation study in human neurodegenerative diseases, we select human fibroblasts as mitochondrial donor because that fibroblasts share many characteristics with mesenchymal stromal cells (MSCs). We isolate human primary fibroblasts and develop a mitochondrial DNA (mtDNA)-depleted mouse motor neuron NSC-34 cells (NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells). Fibroblast and NSC-34 cell’s mitochondria are co-cultured with NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells. Mitochondrial transplantation is observed by fluorescent microscopy. Gene expression is determined by polymerase chain reaction (PCR) and real time PCR (qPCR). Also, mitochondria are injected to mice bearing mammary adenocarcinoma 4T1 cells. We find results as following: 1) There are abundant mitochondria in fibroblasts (337 ± 80 mitochondria per fibroblast). 42.4% of viable mitochondria are obtained by using differential centrifugation. The isolated mitochondria actively transplant into NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells after co-culture. 2) Fibroblasts transfer mitochondria to human mammary adenocarcinoma MCF-7 cells. 3) There is no expression of HLA-I antigen in fibroblast’s mitochondria indicating they can be used for allogeneic mitochondrial transplantation without HLA antigen match. 4) PCR and qPCR show that NSC-34 <em>ρ</em><span style="white-space:nowrap;">°</span> cells lose mitochondrially encoded cytochrome c oxidase I (MT-CO1) and mitochondrially encoded NADH dehydrogenase 1 (MT-ND1) and upregulate expression of glycolysis-associated genes hexokinase (HK2), glucose transporter 1 (SLC2A1) and lactate dehydrogenase A (LDHA). 5) Transplantation of NSC-34 mitochondria restores MT-CO1 and MT-ND1 and downregulates gene expression of HK2, SLC2A1 and LDHA. 6) Normal mammary epithelial mitochondria successfully enter to 4T1 cells in mice. Subcutaneous injection of mitochondria is safe for mice. In summary, mitochondrial transplantation replenishes mtDNA and rescues aerobic respiration of diseased cells with mitochondrial dysfunction. Human primary fibroblasts are potential mitochondrial donor for mitochondrial transplantation study in human neurodegenerative diseases.
基金Supported by the National-Natural Science Foundation of China,No.30070043
文摘AIM:To study the nuclear microsatellite instability (nMSI) at BAT26 and mitochondral microsalellite instability (mtMSI) in the occurrence and development of hepatocellular carcinoma and the relationship between nMSI and mtMSI.METHODS: nMSI was observed with PCR and mtMSI with PCR-SSCP in 52 cases of hepatocellular carcinoma.RESULTS:mtMSI was detected in 11 out of the 52 cases of hepatocellular carcinoma (21.2%). Among the 11 cases of hepatocellular carcinoma with mtMSI, 7 occured in one locus and 4 in 2 loci. The frequency of mtMSI in the 52 cases of hepatocellular carcinoma showed no correlation to sex, age,infection of hepatitis B, liver cirrhosis as well as positive AFP of the patients (P>0.05). In addition, nMSI was detected in 3 out of 52 cases of hepatocellular carcinoma (5.8%) and there was no correlation of the incidence of mtMSI to that of nMSI (P>0.05).CONCLUSION:mtMSI may be involved in the coccurrence and development of hepatocellular carcinoma and it is independent of nMSI.
基金supported by the grand from Key Subjects Construction of the 10th Five-Year Plans 211 Project of the Ministry of Edu-cation [No. Jiaozhongban (2002) No.2].
文摘OBJECTIVE To compare the differences of mitochondrial DNA (mtDNA) copies among the tissues of esophageal squamous cell carcinoma (ESCC), para-neoplastic tissue and normal mucous membrane of the esophagus, and to study the relationship between the mtDNA and the occurrence and devel- opment of esophageal squamous cell carcinoma. METHODS The mtDNA copies of 42 specimens with the ESCC, paraneoplastic mucous tissue and normal mucous membrane of the esophagus were determined using real-time fluorescence quantitative PCR. The mtDNA was analyzed using agarose gel electrophoresis. RESULTS The mtDNA from all of the tissues (42/42) from the ESCC, para-neoplastic tissue and normal esophageal mucous membranes was analyzed, showing that there were an average mtDNA copy number of 27.1894×106 μg DNA, 9.4102×106 μg DNA and 5.9347×106 μg DNA, from the respective tissues. There were signifi cant differences (F=27.83, P<0.05) in mtDNA copy number among the three. A positive band was shown at 403 bp after gel electrophoresis of the PCR products, and the lane where the ESCC mtDNA located was rather bright, which was in accordance with the result of the real-time PCR determination. CONCLUSION An increase in the mtDNA copy number is related to the occurrence and development of ESCC.
文摘Nonalcoholic fatty liver disease(NAFLD) is the most common liver disease worldwide, affecting approximately one third of the Western world. It consists of a wide spectrum of liver disorders, ranging from fatty liver to nonalcoholic steatohepatitis(NASH), which consists of steatosis, ballooning injury and inflammation. Despite an alarming growth in the statistics surrounding NAFLD, there are as yet no effective therapies for its treatment. Innate immune signaling has been thought to play a significant role in initiating and augmenting hepatic inflammation, contributing to the transition from nonalcoholic fatty liver to NASH. An immune response is triggered by countless signals called damage-associated molecular patterns(DAMPs) elicited by lipid-laden and damaged hepatocytes, which are recognized by pattern recognition receptors(PRRs) on hepatic immune cells to initiate inflammatory signaling. In this editorial, in addition to summarizing innate immune signaling in NAFLD and discussing potential therapies that target innate immune pathways, we have described a recent study that demonstrated that mitochondrial DNA serves as a DAMP activating a hepatic PRR, TLR9, in mice and in the plasma of NASH patients. In addition to identifying a new ligand for TLR9 during NASH progression, the study shows that blocking TLR9 reverses NASH, paving the way for the development of future NASH therapy.
文摘Phosphatidylglycerol (PG) an important membrane phospholipid required for the synthesis of diphos-phatidylglycerol (DPG) commonly known as cardiolipin (CL) was identified in the fraction of endo-plasmic reticulum (ER)-derived transport vesicles which had no affinity for Golgi. The vesicles were produced in the presence of Brefeldin A (BFA), the agent known to inhibit ER-Golgi transport, and found to display affinity to mitochondria. The analysis revealed that their cargo was not containing proteins that are transported to Golgi, and that their membrane was free of phosphatidylinositol (PI) and ceramides (Cer). The incubation of PG-containing transport vesicles with mitochondria afforded incorporation of their membrane into the Outer Mito-chondrial Membrane (OMM) and formation of lyso-phosphatidylglycerol (LPG). In turn, upon further incubation with fresh transport active cytosol, the mitochondrial LPG was converted to PG. The results of analysis of the OMM, Inner Mitochondrial Mem-brane (IMM) and Inner Mitochondrial Space Components (IMSC) strongly suggest that PG-containing transport vesicles deliver nuclear DNA translation products to the IMSC and thus facilitate CL synthesis in the IMM. In summary, our studies provide evidence that ER-generated PG-enriched transport vesicles represent the general pathway for restitution of mitochondrial membranes and the delivery of nuclear DNA translation products that generate CL, and thus sustain the mitochondrial matrix CL-dependent metabolic reactions.
基金financially supported by the National Key Research and Development Program of China(2022YFE0210100,2023YFE0210100,2022YFA1103800,2019YFA0904500)the National Natural Science Foundation projects of China(32025010,92157202,32241002,92254301,92357302,32261160376,31970709,32070729,32100619,32170747,32322022,32370782,32371007,32300608,32300620)+8 种基金NSFC/RGC Joint Grant Scheme 2022/2023(N_CUHK 428/22)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0480000)the Key Research Program,CAS(ZDBS-ZRKJZ-TLC003)International Cooperation Program,CAS(154144KYSB20200006)CAS Project for Young Scientists in Basic Research(YSBR-075)Guangdong Province Science and Technology Program(2023B0303000023,2023B1111050005,2023A1515030231,2022A1515110493,2023B1212060050,2021A1515012513,2021B1515020096,2022A1515012616,2022A1515110951,2023B1212120009,2024A1515010782,2024B1515040020,2024A1515030120)Guangzhou Science and Technology Program(202102021037,202102020827,202102080066,202206060002,2023A04J0414)Health@InnoHK funding support from the Innovation Technology Commission of the Hong Kong SAR,Basic Research Project of Guangzhou Institutes of Biomedicine and Health,Chinese Academy of SciencesCAS Youth Innovation Promotion Association(to Y.W and K.C).
文摘Leber’s hereditary optic neuropathy(LHON)is a debilitating mitochondrial disease associated with mutations in mitochondrial DNA(mtDNA).Unfortunately,the available treatment options for LHON patients are limited due to challenges in mitochondrial replacement.In our study,we reprogramming LHON urine cells into induced pluripotent stem cells(iPSCs)and differentiating them into neural progenitor cells(NPCs)and neurons for disease modeling.Our research revealed that LHON neurons exhibited significantly higher levels of mtDNA mutations and reduced mitochondrial function,confirming the disease phenotype.However,through co-culturing LHON iPSC-derived NPCs with mesenchymal stem cells(MSCs),we observed a remarkable rescue of mutant mtDNA and a significant improvement in mitochondrial metabolic function in LHON neurons.These findings suggest that co-culturing with MSCs can enhance mitochondrial function in LHON NPCs,even after their differentiation into neurons.This discovery holds promise as a potential therapeutic strategy for LHON patients.
基金We thank for the funding support from the Scientific Research Project of National TCM Clinical Research Base Business Construction of National Administration of Traditional Chi-nese Medicine(JDZX2015068)Henan Sci-ence and Technology Project(202102310164)+1 种基金Henan Scientific Research Project of Traditional Chinese Medicine(2019JDZX025)Scientific Research Project of Henan Province Hospital of TCM(2018YJKT09).
文摘Objective:To investigate the effect of Chinese medicine Compound Weichang'an(胃肠安)for invig-orating the spleen on apoptosis of gastric cancer SGC7901 cells and its possible mechanism.Methods:The gas-trie cancer SGC-7901 cells were divided into different mass concentration groups(0 mg·L^(-1),500 mg·L^(-1)1000 mg·L^(-1),1500 mg·L^(-1),2000 mg·L^(-1)).CCK8 and monoclonal test were applied to detect prolifera-tion ability;comet assay was used to detect DNA damage.After DCFH-DA fluorescent labeling,the level of ROS activity was detected by flow cytometer;after AnnexinV-FTC/PI double labeling,the proportion of apoptotic ellls was detected by flow cytometer;after JC-1 staining,the mi tochondri almembrane potential was detected by flow cytometer;after FTTC-DEVD-FMK staining,the ratio of Caspase activity was detected by flow cytometer.Results:Weichang an inhibited cell proliferation and reduced cell colony formation in a time-dose-dependent manner;the results of comet electrophoresis showed that Weichang'an could induce DNA damage in gastric cancer cells;com-pared with control group.the ratio of Weichang'an's intervention with the apoptosis of gastric cancer cells in-creased(P<0.05),the mitochondrial membrane potential decreased(P<0.05),the activity of Caspase3 and Caspase9 increased(P<0.05),and the intracellular ROS level increased(P<0.05).Among them,the effect of Weichang'an treatment group(1000 mg·L^(-1))was the most significant.Conclusion:Weichang'an has an inhibi-tory effect on the proliferation of gastric cancer SGC7901 cells and can induce cell apoptosis.Its mechanism may be related with the ROS-mediated pathway of mitochondrial apoptosis and DNA damage.
文摘Alzheimer’s disease (AD) is an increasingly pressing worldwide public-health, social, political and economic concern. Despite significant investment in multiple traditional therapeutic strategies that have achieved success in preclinical models addressing the pathological hallmarks of the disease, these efforts have not translated into any effective disease-modifying therapies. This could be because interventions are being tested too late in the disease process. While existing therapies provide symptomatic and clinical benefit, they do not fully address the molecular abnormalities that occur in AD neurons. The pathophysiology of AD is complex; mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress are antecedent and potentially play a causal role in the disease pathogenesis. Dysfunctional mitochondria accumulate from the combination of impaired mitophagy, which can also induce injurious inflammatory responses, and inadequate neuronal mitochondrial biogenesis. Altering the metabolic capacity of the brain by modulating/potentiating its mitochondrial bioenergetics may be a strategy for disease prevention and treatment. We present insights into the mechanisms of mitochondrial dysfunction in AD brain as well as an overview of emerging treatments with the potential to prevent, delay or reverse the neurodegenerative process by targeting mitochondria.
基金supported by the Ministry of Science and Technology of China (2021YFF0702700,STI2030-Major Project2021ZD0200900)National Natural Science Foundation of China (U2102202,U1702284)Yunnan Province (202305AH340006)。
文摘Tree shrews(Tupaia belangeri chinensis)share a close relationship to primates and have been widely used in biomedical research.We previously established a spermatogonial stem cell(SSC)-based gene editing platform to generate transgenic tree shrews.However,the influences of long-term expansion on tree shrew SSC spermatogenesis potential remain unclear.Here,we examined the in vivo spermatogenesis potential of tree shrew SSCs cultured across different passages.We found that SSCs lost spermatogenesis ability after long-term expansion(>50 passages),as indicated by the failure to colonize the seminiferous epithelium and generate donor spermatogonia(SPG)-derivedspermatocytesor spermatids marking spermatogenesis.RNA sequencing(RNA-seq)analysis of undifferentiated SPGs across different passages revealed significant gene expression changes after sub-culturing primary SPG lines for more than 40 passages on feeder layers.Specifically,DNA damage response and repair genes(e.g.,MRE11,SMC3,BLM,and GEN1)were down-regulated,whereas genes associated with mitochondrial function(e.g.,NDUFA9,NDUFA8,NDUFA13,and NDUFB8)were up-regulated after expansion.The DNA damage accumulation and mitochondrial dysfunction were experimentally validated in high-passage cells.Supplementation with nicotinamide adenine dinucleotide(NAD+)precursor nicotinamide riboside(NR)exhibited beneficial effects by reducing DNA damage accumulation and mitochondrial dysfunction in SPG elicited by long-term culture.Our research presents a comprehensive analysis of the genetic and physiological attributes critical for the sustained expansion of undifferentiated SSCs in tree shrews and proposes an effective strategy for extended in vitro maintenance.
基金Supported by Natural Science Foundation of Chongqing in China(2009c195)
文摘Objective: To ascertain the variations of mitochondrion DNA (mtDNA) in mouse tumors and to inquire into the relationship between mutations of mtDNA and carcinogenesis Methods: The variations of D-loop, ND3 and tRNA^Met+Glu+Ile gene fragments of mtDNA from six tumor cell lines of mice were analyzed by PCR technology with restriction fragment length polymorphism analysis (polymerase chain reaction-restriction fragment length polymorphism, PCR-RFLP) and single strand conformation polymorphism analysis (SSCP-PCR) method. Results: ND3 and tRNA^Met+Glu+Ile gene fragments ofmtDNA from the tumors showed no variation in 27 endonuclease sites; D-loop ofmtDNA from Hca-F had an additional endonuclease sites of Hinf I in contrast to that of the inbred mouse. Deeply analyzed by PCR-SSCP, the D-loop ofmtDNA was found to possess mutations in 4 of 6 tumors. Conclusion: D-loop is the hot spot of tumor mtDNA mutation which can act as contributors to the carcinogenic
基金This work was supported by the National Natural Science Foundation Regional Innovation and Development(No.U19A2003)National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2018ZX09733001)+1 种基金Excellent Youth Foundation of the Sichuan Scientific Committee Grant in China(No.2019JDJQ008)Development Program of China(No.2016YFA0201402).
文摘Exposure to ionizing radiation,a physical treatment that inactivates live tumor cells,has been extensively applied to enhance the antitumor responses induced by cancer cell vaccines in both animal research and human clinical trials.However,the mechanisms by which irradiated cells function as immunogenic tumor vaccines and induce effective antitumor responses have not been fully explored.Here,we demonstrate that oxidized mitochondrial DNA(mtDNA)and stimulator of interferon genes(STING)signaling play a key roles in the enhanced antitumor effect achieved with an irradiated tumor cell vaccine.Elevations in ROS and oxidized mtDNA 8-OHG content could be induced in irradiated tumor cells.Oxidized mtDNA derived from irradiated tumor cells gained access to the cytosol of dendritic cells(DCs).Oxidized mtDNA,as a DAMP or adjuvant,activated the STING-TBK1-IRF3-IFN-β pathway in DCs,which subsequently cross-presented irradiated tumor cell-derived antigens to CD8^(+)T cells and elicited antitumor immunity.The results of our study provide insight into the mechanism by which an irradiated cell vaccine mediates antitumor immunity,which may have implications for new strategies to improve the efficacy of irradiated vaccines.
基金Project supported by the National Basic Research Program of China(No.2014CB943001)the National Natural Science Foundation of China(Nos.31771398 and 31571299)+1 种基金the Fundamental Research Funds for the Central Universities(No.2019QNA6001)the Zhejiang Provincial Natural Science Foundation of China(Nos.LZ19C060001 and LY14C060004)
文摘Mitochondrion is a semi-autonomous organelle,important for cell energy metabolism,apoptosis,the production of reactive oxygen species(ROS),and Ca2+homeostasis.Mitochondrial DNA(mtDNA)mutation is one of the primary factors in mitochondrial disorders.Though much progress has been made,there remain many difficulties in constructing cell models for mitochondrial diseases.This seriously restricts studies related to targeted drug discovery and the mechanism and therapy for such diseases.Here we summarize the characteristics of patient-specific immortalized lymphoblastoid cells,fibroblastoid cells,cytoplasmic hybrid(cybrid)cell lines,and induced pluripotent stem cells(iPSCs)-derived differentiation cells in the study of mitochondrial disorders,as well as offering discussion of roles and advances of these cell models,particularly in the screening of drugs.