The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is t...The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is the key to maintaining intracellular homeostasis and proteostasis.Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development,metabolism,and immune processes.UPRmt dysfunction leads to a variety of pathologies,including cancer,inflammation,neurodegenerative disease,metabolic disease,and immune disease.Stem cells have a special ability to selfrenew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues.These cells are involved in development,tissue renewal,and some disease processes.Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported,the roles of the UPRmt in stem cells are not fully understood.The roles and functions of the UPRmt depend on stem cell type.Therefore,this paper summarizes the potential significance of the UPRmt in embryonic stem cells,tissue stem cells,tumor stem cells,and induced pluripotent stem cells.The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.展开更多
There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environme...There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues(e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition,it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.展开更多
基金Supported by the Key Projects of Natural Science Foundation of Ningxia,No.2020AAC02020the Funds of Ningxia Medical University,No.XY201808.
文摘The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is the key to maintaining intracellular homeostasis and proteostasis.Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development,metabolism,and immune processes.UPRmt dysfunction leads to a variety of pathologies,including cancer,inflammation,neurodegenerative disease,metabolic disease,and immune disease.Stem cells have a special ability to selfrenew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues.These cells are involved in development,tissue renewal,and some disease processes.Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported,the roles of the UPRmt in stem cells are not fully understood.The roles and functions of the UPRmt depend on stem cell type.Therefore,this paper summarizes the potential significance of the UPRmt in embryonic stem cells,tissue stem cells,tumor stem cells,and induced pluripotent stem cells.The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
基金supported by the National Key R&D Program of China(2017YFA0506400)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB39000000)+1 种基金the National Natural Science Foundation of China(31930023,31771333)supported by the China National Postdoctoral Program for Innovative Talents(BX2021356)。
文摘There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues(e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition,it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.