Owing to the stimulus-responsive and dynamic properties,magnetism-driven assembly of building blocks to form ordered structures is always a marvelous topic.While abundant magnetic assemblies have been developed in ide...Owing to the stimulus-responsive and dynamic properties,magnetism-driven assembly of building blocks to form ordered structures is always a marvelous topic.While abundant magnetic assemblies have been developed in ideal physical and chemical conditions,it remains a challenge to realize magnetic assembly in complicated biological systems.Herein,we report a kind of biomacromolecule-modified magnetic nanosheets,which are mainly composed of superparamagnetic graphene oxide(Y-Fe2O3@GO),the tumor-targeting protein transferrin(TF),and the mitochondrion-targeting peptide(MitP).Such large-size nanosheets(0.5-1μm),noted as L-Fe2O3@GO-MitP-TF,can successfully in s itu assemble on the surface of tumor cells in a size-dependent and tumor cell-specific way,leading to severe inhibition of nutrient uptake for the tumor cells.More significantly,the nanostructures could efficiently confine the tumor cells,preventing both invasion and metastasis of tumor cells both in vitro and in vivo.Moreover,the 2D assemblies could remarkably disrupt the mitochondria and induce apoptosis,remarkably eradicating tumors under near-infrared(NIR)irradiation.This study sheds light on the development of new nano-systems for efficient cancer therapy and other biomedical applications.展开更多
In this study,we prepared mitochondrion targeting peptide-grafted magnetic graphene oxide(GO)nanocarriers for efficient impairment of the tumor mitochondria.The two-dimensional GOMNP-MitP nanosheets were synthesized b...In this study,we prepared mitochondrion targeting peptide-grafted magnetic graphene oxide(GO)nanocarriers for efficient impairment of the tumor mitochondria.The two-dimensional GOMNP-MitP nanosheets were synthesized by grafting magnetic y-Fe_(2)O_(3)to the surface of GO,followed by covalent modification of mitochondrion targeting peptide(MitP).GOMNP-MitP exhibited the high capacity of loading the anticancer drug mitoxantrone(MTX),and preferentially targeted the tumor mitochondria.With the aid of alternating magnetic field(AMF),the MTX-loading GOMNP-MitP released MTX to the mitochondria,severely impairing mitochondrial functions,including attenuation of ATP production,decrease in mitochondrial membrane potential(MMP),and further leading to activation of apoptosis.This study realized high-efficient mitochondrion-ta rgeting drug delivery for anticancer therapy by twodimensional nanoplatforms.展开更多
基金This work was financially funded by the National Natural Science Foundation of China(Nos.31870139,21761132008).
文摘Owing to the stimulus-responsive and dynamic properties,magnetism-driven assembly of building blocks to form ordered structures is always a marvelous topic.While abundant magnetic assemblies have been developed in ideal physical and chemical conditions,it remains a challenge to realize magnetic assembly in complicated biological systems.Herein,we report a kind of biomacromolecule-modified magnetic nanosheets,which are mainly composed of superparamagnetic graphene oxide(Y-Fe2O3@GO),the tumor-targeting protein transferrin(TF),and the mitochondrion-targeting peptide(MitP).Such large-size nanosheets(0.5-1μm),noted as L-Fe2O3@GO-MitP-TF,can successfully in s itu assemble on the surface of tumor cells in a size-dependent and tumor cell-specific way,leading to severe inhibition of nutrient uptake for the tumor cells.More significantly,the nanostructures could efficiently confine the tumor cells,preventing both invasion and metastasis of tumor cells both in vitro and in vivo.Moreover,the 2D assemblies could remarkably disrupt the mitochondria and induce apoptosis,remarkably eradicating tumors under near-infrared(NIR)irradiation.This study sheds light on the development of new nano-systems for efficient cancer therapy and other biomedical applications.
基金supported by National Natural Science Foundation of China(No.31870139)Natural Science Foundation of Tianjin(No.19JCZDJC33800)+1 种基金Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project(No.TSBICIP-KJGG-006)the Fundamental Research for the Central Universities。
文摘In this study,we prepared mitochondrion targeting peptide-grafted magnetic graphene oxide(GO)nanocarriers for efficient impairment of the tumor mitochondria.The two-dimensional GOMNP-MitP nanosheets were synthesized by grafting magnetic y-Fe_(2)O_(3)to the surface of GO,followed by covalent modification of mitochondrion targeting peptide(MitP).GOMNP-MitP exhibited the high capacity of loading the anticancer drug mitoxantrone(MTX),and preferentially targeted the tumor mitochondria.With the aid of alternating magnetic field(AMF),the MTX-loading GOMNP-MitP released MTX to the mitochondria,severely impairing mitochondrial functions,including attenuation of ATP production,decrease in mitochondrial membrane potential(MMP),and further leading to activation of apoptosis.This study realized high-efficient mitochondrion-ta rgeting drug delivery for anticancer therapy by twodimensional nanoplatforms.