BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mai...BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.展开更多
Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell diff...Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.展开更多
Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation ...Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.展开更多
Background:In consideration of characteristics and functions,extra-cellular signal-regulated protein kinase 5(ERK5)signaling pathway could be a new target for spinal cord injury(SCI)treatment.Our study aimed to evalua...Background:In consideration of characteristics and functions,extra-cellular signal-regulated protein kinase 5(ERK5)signaling pathway could be a new target for spinal cord injury(SCI)treatment.Our study aimed to evaluate the roles of ERK5 signaling pathway in secondary damage of SCI.Methods:We randomly divided 70 healthy Wistar rats into five groups:ten in the blank group,15 in the sham surgery+BIX02188(sham+B)group,15 in the sham surgery+dimethyl sulfoxide(DMSO;sham+D)group,15 in the SCI+BIX02188(SCI+B)group,and 15 in the SCI+DMSO(SCI+D)group.BIX02188 is a specific inhibitor of the ERK5 signaling pathway.SCI was induced by the application of vascular clips(with the force of 30 g)to the dura on T10 level,while rats in the sham surgery group underwent only T9-T11 laminectomy.BIX02188 or DMSO was intra-thecally injected at 1,6,and 12 h after surgery or SCI.Spinal cord samples were taken for testing at 24 h after surgery or SCI.Results:Expression of phosphorylated-ERK5(p-ERK5)significantly increased after SCI.Application of BIX02188 indeed inhibited ERK5 signaling pathway and reduced the degree of spinal cord tissue injury,neutrophil infiltration and proinflammatory cytokine expression,nuclear factor-kB(NF-kB)activation and apoptosis(measured by TdT-mediated 20-deoxyuridine 50-triphosphate nickend labeling,expression of Fas-ligand,BCL2-associated X[Bax],and B-cell lymphoma-2[Bcl-2]).Double immunofluorescence revealed activation of ERK5 in neurons and microglia after SCI.Conclusion:ERK5 signaling pathway was activated in spinal neurons and microglia,contributing to secondary injury of SCI.Moreover,inhibition of ERK5 signaling pathway could alleviate the degree of SCI,which might be related to its regulation of infiltration of inflammatory cells and release of inflammatory cytokines,expression of NF-kB and cell apoptosis.展开更多
AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by...AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen and phosphatidylinositol activated protein kinase 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.展开更多
Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on t...Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.展开更多
Background: The mitogen-activated extracellular signal-regulated kinase 1/2(MEK1/2) inhibitor trametinib has shown promising therapeutic effects on melanoma, but its efficacy on colorectal cancer(CRC) is limited. Synt...Background: The mitogen-activated extracellular signal-regulated kinase 1/2(MEK1/2) inhibitor trametinib has shown promising therapeutic effects on melanoma, but its efficacy on colorectal cancer(CRC) is limited. Synthetic lethality arises with a combination of two or more separate gene mutations that causes cell death, whereas individual mutations keep cells alive. This study aimed to identify the genes responsible for resistance to trametinib in CRC cells,using a synthetic lethal short hairpin RNA(shRNA) screening approach.Methods: We infected HT29 cells with a pooled lentiviral shRNA library and applied next-generation sequencing to identify shRNAs with reduced abundance after 8-day treatment of 20 nmol/L trametinib. HCT116 and HT29 cells were used in validation studies. Stable ring finger protein 183(RNF183)-overexpressing cell lines were generated by pcDNA4-myc/his-RNF183 transfection. Stable RNF 183-knockdown cell lines were generated by infection of lentiviruses that express RNF183 shRNA, and small interference RNA(siRNA) was used to knock down RNF183 transiently.Quantitative real-time PCR was used to determine the mRNA expression. Western blotting, immunohistochemical analysis, and enzyme-linked immunosorbent assay(ELISA) were used to evaluate the protein abundance. MTT assay,colony formation assay, and subcutaneous xenograft tumor growth model were used to evaluate cell proliferation.Results: In the primary screening, we found that the abundance of RNF183 shRNA was markedly reduced after treatment with trametinib. Trametinib induced the expression of RNF183, which conferred resistance to drug-induced cell growth repression and apoptotic and non-apoptotic cell deaths. Moreover, interleukin-8(IL-8) was a downstream gene of RNF183 and was required for the function of RNF183 in facilitating cell growth. Additionally, elevated RNF183 expression partly reduced the inhibitory effect of trametinib on IL-8 expression. Finally, xenograft tumor model showed the synergism of RNF183 knockdown and trametinib in repressing the growth of CRC cells in vivo.Conclusion: The RNF183-IL-8 axis is responsible for the resistance of CRC cells to the MEK1/2 inhibitor trametinib and may serve as a candidate target for combined therapy for CRC.展开更多
Objective: BCR/ABL oncoprotein-expression is associated with uncontrolled cell growth. Sphingosine kinase 1 (SPK1) regulates the production of sphingosine 1-phosphate (S1P), a key lipid signal molecular in cell p...Objective: BCR/ABL oncoprotein-expression is associated with uncontrolled cell growth. Sphingosine kinase 1 (SPK1) regulates the production of sphingosine 1-phosphate (S1P), a key lipid signal molecular in cell proliferation and survival. The objective of this study was to elucidate the roles of S1P and its receptors in bcr/abl positive chronic myeloid leukemia (CML) cells. Methods: The expressions of SIP receptors: S1P1, S1P2 and S1P3 in CML cells were detected by RT-PCR. SPK1 expression, activity and extracellular S1P were determined in ECV304 and HL-60 cells which were transfected with bcr/abl gene. To elucidate the relationship between the BCR/ABL, ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase), SPK/S 1P and S 1P/S 1 P2 signal pathways, bcr/abl positive CML cell line K562 was treated with STI571, PD98059, N,N-dimethyl sphingosine (DMS) and JTE-013. Results: Retrovirus-mediated overexpression of bcr/abl gene in ECV304 and HL-60 cells resulted in upregulation of the expression, activity of SPK1 and increase of the secretion of SIP, whereas treatment of STI571 and PD98059 decreased the BCR/ABL-induced S1P secretion. Treatment of DMS reduced S1P secretion and P42/44MAPK phosphorylation. S1P2-selective antagonist JTE-013 could also decrease P42/44MAPK phosphorylation. Conclusion: These results suggest that BCR/ABL up-regulates extracellular sphingosine 1-phosphate through sphingosine kinase 1 and there is cross-talk between SPK1/S1P/S1P2 and P42/44MAPK in bcr/abl positive CML cells.展开更多
基金Liaoning Provincial Science and Technology Department Project,No.2023JH2/101700149Open Fund Project of Liaoning University of Traditional Chinese Medicine,No.zyzx2205.
文摘BACKGROUND Colon cancer(CC)is one of the most common malignant tumors in the gastrointestinal system.Overall,CC had the third highest incidence but the second highest mortality rate globally in 2020.Nowadays,CC is mainly treated with capecitabine chemotherapy regimen,supplemented by radiotherapy,immunotherapy and targeted therapy,but there are still limitations,so Chinese medicine plays an important role.AIM To investigate the effects of invigorating-spleen and anticancer prescription(ISAP)on body weight,tumor inhibition rate and expression levels of proteins in extracellular-signal-regulated kinase(ERK)/mitogen-activated protein kinase(MAPK)signaling pathway in CC mice model.METHODS The CC mice model were established and the mice were randomly divided into 5 groups,including the control group,capecitabine group,the low-dose,mediumdose and high-dose groups of ISAP,with 8 mice in each group,respectively.After 2 weeks of intervention,the body weight and tumor inhibition rate of mice were observed,and the expression of RAS,ERK,phosphorylated ERK(p-ERK),C-MYC and matrix metalloproteinase 2(MMP2)proteins in the tissues of tumors were detected.RESULTS Compared with the control group,the differences of body weight before and after treatment was much smaller in the groups of ISAP,with the smallest difference in the high-dose group of ISAP,while the capecitabine group had the greatest difference,indicating ISAP had a significant inhibiting effect on the growth of transplanted tumor in mice.The expression of RAS protein was decreased in the low-and medium-dose groups of ISAP,and the change of p-ERK was significant in the medium-and high-dose groups of ISAP.MMP2 protein expression was significantly decreased in both the low-dose and medium-dose groups of ISAP.There were no significant changes in ERK in the ISAP group compared to the capecitabine group,while RAS,MMP2,and C-MYC protein expression were reduced in the ISAP group.The expression level of C-MYC protein decreased after treated with ISAP,and the decrease was the most significant in the medium-dose group of ISAP.CONCLUSION ISAP has a potential inhibiting effect on transplanted tumor in mice,and could maintain the general conditions,physical strength and body weight of mice.The expression levels of RAS,p-ERK,MMP2 and c-myc were also decreased to a certain extent.By inhibiting the expression of upstream proteins,the expression levels of downstream proteins in ERK/MAPK signaling pathway were significantly decreased.Therefore,it can be concluded that ISAP may exert an anti-tumor effect by blocking the ERK/MAPK signaling pathway and inhibiting the expression of MMP2 and c-myc proteins.
基金sponsored by the National Natural Science Foundation of China,No.81102595the Natural Science Foundation of Guangxi,No.2012GXNSFAA053113
文摘Our preliminary studies confirmed that an active principle region of Buyang Huanwu decoction, comprising alkaloid, polysaccharide, aglycon, glucoside and volatile oil, can induce bone marrow mesenchymal stem cell differentiation into neurons. Mitogen-activated protein kinase signaling was identified as one of the key pathways underlying this differentiation process. The present study shows phosphorylated extracellular signal-regulated protein kinase and phosphorylated p38 protein expression was increased after differentiation. Cellular signaling pathway blocking agents, PD98059 and SB203580, inhibited extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways respectively, mRNA and protein expression of the neuronal marker, neuron specific enolase, and neural stem cell marker, nestin, were decreased in bone marrow mesenchymal stem cells after treatment with the active principle region of Buyang Huanwu decoction. Experimental findings indicate that, extracellular signal-regulated protein kinase and p38 in mitogen-activated protein kinase signaling pathways participate in bone marrow mesenchymal stem cell differentiation into neuron-like cells, induced by the active principle region of Buyang Huanwu decoction.
文摘Mitogen-activated protein kinases(MAPKs)are a family of proteins that constitute signaling pathways involved in processes that control gene expression,cell division, cell survival,apoptosis,metabolism,differentiation and motility.The MAPK pathways can be divided into conventional and atypical MAPK pathways.The first group converts a signal into a cellular response through a relay of three consecutive phosphorylation events exerted by MAPK kinase kinases,MAPK kinase,and MAPK.Atypical MAPK pathways are not organized into this three-tiered cascade.MAPK that belongs to both conventional and atypical MAPK pathways can phosphorylate both non-protein kinase substrates and other protein kinases.The latter are referred to as MAPK-activated protein kinases.This review focuses on one such MAPK-activated protein kinase,MAPK-activated protein kinase 5(MK5)or p38-regulated/activated protein kinase(PRAK).This protein is highly conserved throughout the animal kingdom and seems to be the target of both conventional and atypical MAPK pathways.Recent findings on the regulation of the activity and subcellular localization,bona fide interaction partners and physiological roles of MK5/PRAK are discussed.
文摘Background:In consideration of characteristics and functions,extra-cellular signal-regulated protein kinase 5(ERK5)signaling pathway could be a new target for spinal cord injury(SCI)treatment.Our study aimed to evaluate the roles of ERK5 signaling pathway in secondary damage of SCI.Methods:We randomly divided 70 healthy Wistar rats into five groups:ten in the blank group,15 in the sham surgery+BIX02188(sham+B)group,15 in the sham surgery+dimethyl sulfoxide(DMSO;sham+D)group,15 in the SCI+BIX02188(SCI+B)group,and 15 in the SCI+DMSO(SCI+D)group.BIX02188 is a specific inhibitor of the ERK5 signaling pathway.SCI was induced by the application of vascular clips(with the force of 30 g)to the dura on T10 level,while rats in the sham surgery group underwent only T9-T11 laminectomy.BIX02188 or DMSO was intra-thecally injected at 1,6,and 12 h after surgery or SCI.Spinal cord samples were taken for testing at 24 h after surgery or SCI.Results:Expression of phosphorylated-ERK5(p-ERK5)significantly increased after SCI.Application of BIX02188 indeed inhibited ERK5 signaling pathway and reduced the degree of spinal cord tissue injury,neutrophil infiltration and proinflammatory cytokine expression,nuclear factor-kB(NF-kB)activation and apoptosis(measured by TdT-mediated 20-deoxyuridine 50-triphosphate nickend labeling,expression of Fas-ligand,BCL2-associated X[Bax],and B-cell lymphoma-2[Bcl-2]).Double immunofluorescence revealed activation of ERK5 in neurons and microglia after SCI.Conclusion:ERK5 signaling pathway was activated in spinal neurons and microglia,contributing to secondary injury of SCI.Moreover,inhibition of ERK5 signaling pathway could alleviate the degree of SCI,which might be related to its regulation of infiltration of inflammatory cells and release of inflammatory cytokines,expression of NF-kB and cell apoptosis.
基金Supported by A grant from the Arkansas Master Tobacco Settlement and Arkansas Biosciences Institute
文摘AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen and phosphatidylinositol activated protein kinase 3-kinase (PI3K) inhibitor treatment.RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.
基金supported by the National Natural Science Foundation of China,No.81303091
文摘Cold-inducible RNA-binding protein(CIRP), a key regulatory protein, could be facilitated by mild hypothermia in the brain, heart and liver. This study observed the effects of mild hypothermia at 31 ± 0.5℃ on traumatic brain injury in rats. Results demonstrated that mild hypothermia suppressed apoptosis in the cortex, hippocampus and hypothalamus, facilitated CIRP m RNA and protein expression in these regions, especially in the hypothalamus. The anti-apoptotic effect of mild hypothermia disappeared after CIRP silencing. There was no correlation between mitogen-activated extracellular signal-regulated kinase activation and CIRP silencing. CIRP silencing inhibited extracellular signal-regulated kinase-1/2 activation. These indicate that CIRP inhibits apoptosis by affecting extracellular signal-regulated kinase-1/2 activation, and exerts a neuroprotective effect during mild hypothermia for traumatic brain injury.
基金supported by the National Natural Science Foundation of China(Nos.81672744,81472252)Science and Technology Project of Guangdong Province(No.2016A020217007)Guangdong Esophageal Cancer Institute(No.M201606)
文摘Background: The mitogen-activated extracellular signal-regulated kinase 1/2(MEK1/2) inhibitor trametinib has shown promising therapeutic effects on melanoma, but its efficacy on colorectal cancer(CRC) is limited. Synthetic lethality arises with a combination of two or more separate gene mutations that causes cell death, whereas individual mutations keep cells alive. This study aimed to identify the genes responsible for resistance to trametinib in CRC cells,using a synthetic lethal short hairpin RNA(shRNA) screening approach.Methods: We infected HT29 cells with a pooled lentiviral shRNA library and applied next-generation sequencing to identify shRNAs with reduced abundance after 8-day treatment of 20 nmol/L trametinib. HCT116 and HT29 cells were used in validation studies. Stable ring finger protein 183(RNF183)-overexpressing cell lines were generated by pcDNA4-myc/his-RNF183 transfection. Stable RNF 183-knockdown cell lines were generated by infection of lentiviruses that express RNF183 shRNA, and small interference RNA(siRNA) was used to knock down RNF183 transiently.Quantitative real-time PCR was used to determine the mRNA expression. Western blotting, immunohistochemical analysis, and enzyme-linked immunosorbent assay(ELISA) were used to evaluate the protein abundance. MTT assay,colony formation assay, and subcutaneous xenograft tumor growth model were used to evaluate cell proliferation.Results: In the primary screening, we found that the abundance of RNF183 shRNA was markedly reduced after treatment with trametinib. Trametinib induced the expression of RNF183, which conferred resistance to drug-induced cell growth repression and apoptotic and non-apoptotic cell deaths. Moreover, interleukin-8(IL-8) was a downstream gene of RNF183 and was required for the function of RNF183 in facilitating cell growth. Additionally, elevated RNF183 expression partly reduced the inhibitory effect of trametinib on IL-8 expression. Finally, xenograft tumor model showed the synergism of RNF183 knockdown and trametinib in repressing the growth of CRC cells in vivo.Conclusion: The RNF183-IL-8 axis is responsible for the resistance of CRC cells to the MEK1/2 inhibitor trametinib and may serve as a candidate target for combined therapy for CRC.
基金supported by the National Natural Science Foundation of China (No. 30570782).
文摘Objective: BCR/ABL oncoprotein-expression is associated with uncontrolled cell growth. Sphingosine kinase 1 (SPK1) regulates the production of sphingosine 1-phosphate (S1P), a key lipid signal molecular in cell proliferation and survival. The objective of this study was to elucidate the roles of S1P and its receptors in bcr/abl positive chronic myeloid leukemia (CML) cells. Methods: The expressions of SIP receptors: S1P1, S1P2 and S1P3 in CML cells were detected by RT-PCR. SPK1 expression, activity and extracellular S1P were determined in ECV304 and HL-60 cells which were transfected with bcr/abl gene. To elucidate the relationship between the BCR/ABL, ERK/MAPK (extracellular signal-regulated kinase/mitogen-activated protein kinase), SPK/S 1P and S 1P/S 1 P2 signal pathways, bcr/abl positive CML cell line K562 was treated with STI571, PD98059, N,N-dimethyl sphingosine (DMS) and JTE-013. Results: Retrovirus-mediated overexpression of bcr/abl gene in ECV304 and HL-60 cells resulted in upregulation of the expression, activity of SPK1 and increase of the secretion of SIP, whereas treatment of STI571 and PD98059 decreased the BCR/ABL-induced S1P secretion. Treatment of DMS reduced S1P secretion and P42/44MAPK phosphorylation. S1P2-selective antagonist JTE-013 could also decrease P42/44MAPK phosphorylation. Conclusion: These results suggest that BCR/ABL up-regulates extracellular sphingosine 1-phosphate through sphingosine kinase 1 and there is cross-talk between SPK1/S1P/S1P2 and P42/44MAPK in bcr/abl positive CML cells.