This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity a...This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity and hydrogen/oil ratio on the distribution and quality of products was analyzed with the optimal process regime determined, when the VGO was hydrocracked in the presence of the FC-16 catalyst.展开更多
The study on options for catalytic cracking of VGO derived from the Kazakhstan-Russian mixed crude was carried out in a small-scale riser FCC unit. The influence of several catalysts and the LCC-A additive for increas...The study on options for catalytic cracking of VGO derived from the Kazakhstan-Russian mixed crude was carried out in a small-scale riser FCC unit. The influence of several catalysts and the LCC-A additive for increasing propylene yield on the distribution and quality of FCC products was analyzed. This article sets forth the possible issues arising from processing the Kazakhstan-Russian mixed crude in FCC unit and the response measures to be adopted.展开更多
Deep mixed oils with secondary alterations have been widely discovered in the Tarim Basin,but current methods based on biomarkers and isotopes to de-convolute mixed oil cannot calculate the exact mixing proportion of ...Deep mixed oils with secondary alterations have been widely discovered in the Tarim Basin,but current methods based on biomarkers and isotopes to de-convolute mixed oil cannot calculate the exact mixing proportion of different end-member oils,which has seriously hindered further exploration of deep hydrocarbons in the study area.To solve this problem,we constructed a novel method based on the carbon isotope(δ13C)of the group components to de-convolute mixed liquid hydrocarbons under the material balance principle.The results showed that the mixed oil in the Tazhong Uplift was dominantly contributed at an average proportion of 68% by an oil end-member with heavier d13C that was believed to be generated from the Cambrian-Lower Ordovician source rocks,whereas the mixed oil in the Tabei Uplift was predominantly contributed at an average proportion of 61% by an oil end-member with lighter d13C that was believed to be generated from the Middle-Upper Ordovician source rocks.This indicates that,on the basis of the detailed description of the distribution of effective source rocks,the proposed method will be helpful in realizing differential exploration and further improving the efficiency of deep liquid hydrocarbon exploration in the Tarim Basin.In addition,compared to traditional δ13C methods for whole oil and individual n-alkanes in de-convoluted mixed oil,the proposed method has a wider range of applications,including for mixed oils with variations in color and density,indicating potential for promoting the exploration of deep complex mixed oils in the Tarim Basin and even around the world.展开更多
Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a ...Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming(MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and transforms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We applied the Improved Cuckoo Search(ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efficiency. The blending solution can provide a reference for refineries to find the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials.展开更多
文摘This article investigates the influence of the property of VGO derived from the Kazakhstan- Russian mixed crude on the hydrocracking catalyst. The influence of reaction temperature, reaction pressure, space velocity and hydrogen/oil ratio on the distribution and quality of products was analyzed with the optimal process regime determined, when the VGO was hydrocracked in the presence of the FC-16 catalyst.
文摘The study on options for catalytic cracking of VGO derived from the Kazakhstan-Russian mixed crude was carried out in a small-scale riser FCC unit. The influence of several catalysts and the LCC-A additive for increasing propylene yield on the distribution and quality of FCC products was analyzed. This article sets forth the possible issues arising from processing the Kazakhstan-Russian mixed crude in FCC unit and the response measures to be adopted.
基金The authors are grateful for the financial supports provided by the National Science and Technology Major Project of the Ministry of Science and Technology of China(2016ZX04004-004)National Natural Science Foundation of China(41672125)。
文摘Deep mixed oils with secondary alterations have been widely discovered in the Tarim Basin,but current methods based on biomarkers and isotopes to de-convolute mixed oil cannot calculate the exact mixing proportion of different end-member oils,which has seriously hindered further exploration of deep hydrocarbons in the study area.To solve this problem,we constructed a novel method based on the carbon isotope(δ13C)of the group components to de-convolute mixed liquid hydrocarbons under the material balance principle.The results showed that the mixed oil in the Tazhong Uplift was dominantly contributed at an average proportion of 68% by an oil end-member with heavier d13C that was believed to be generated from the Cambrian-Lower Ordovician source rocks,whereas the mixed oil in the Tabei Uplift was predominantly contributed at an average proportion of 61% by an oil end-member with lighter d13C that was believed to be generated from the Middle-Upper Ordovician source rocks.This indicates that,on the basis of the detailed description of the distribution of effective source rocks,the proposed method will be helpful in realizing differential exploration and further improving the efficiency of deep liquid hydrocarbon exploration in the Tarim Basin.In addition,compared to traditional δ13C methods for whole oil and individual n-alkanes in de-convoluted mixed oil,the proposed method has a wider range of applications,including for mixed oils with variations in color and density,indicating potential for promoting the exploration of deep complex mixed oils in the Tarim Basin and even around the world.
基金supported by the National Natural Science Foundation of China(No.21365008)the Science Foundation of Guangxi province of China(No.2012GXNSFAA053230)
文摘Refineries often need to find similar crude oil to replace the scarce crude oil for stabilizing the feedstock property. We introduced the method for calculation of crude blended properties firstly, and then created a crude oil selection and blending optimization model based on the data of crude oil property. The model is a mixed-integer nonlinear programming(MINLP) with constraints, and the target is to maximize the similarity between the blended crude oil and the objective crude oil. Furthermore, the model takes into account the selection of crude oils and their blending ratios simultaneously, and transforms the problem of looking for similar crude oil into the crude oil selection and blending optimization problem. We applied the Improved Cuckoo Search(ICS) algorithm to solving the model. Through the simulations, ICS was compared with the genetic algorithm, the particle swarm optimization algorithm and the CPLEX solver. The results show that ICS has very good optimization efficiency. The blending solution can provide a reference for refineries to find the similar crude oil. And the method proposed can also give some references to selection and blending optimization of other materials.