利用混合激励线性预测(mixed excitation linear prediction,MELP)算法和码激励线性预测(code excitation linear prediction,CELP)算法的优点,提出了一种混合MELP/CELP语音编码模型。编码端对强浊音帧采用MELP编码,对弱浊音帧和清音帧...利用混合激励线性预测(mixed excitation linear prediction,MELP)算法和码激励线性预测(code excitation linear prediction,CELP)算法的优点,提出了一种混合MELP/CELP语音编码模型。编码端对强浊音帧采用MELP编码,对弱浊音帧和清音帧进行CELP编码。MELP编码器采用相位对齐技术提取强浊音帧的相位参数,解决了合成语音与原始语音在时间上不同步的问题。对实现的4 kbit/s混合MELP/CELP声码器进行客观MOS(mean opinion score)值和主观DRT(diagnostic rhythm test)清晰度测试,结果表明,该声码器的合成语音具有较高的可懂度和清晰度。展开更多
为了提高深度模型的编码重构性能,本文为传统对比散度(Contrastive divergence,CD)添加了基于交叉熵的重构误差约束。利用改进后的算法训练了重构性深度自编码机(Reconstructive deep auto-encoder,RDAE),并用RDAE替换混合激励线性预测...为了提高深度模型的编码重构性能,本文为传统对比散度(Contrastive divergence,CD)添加了基于交叉熵的重构误差约束。利用改进后的算法训练了重构性深度自编码机(Reconstructive deep auto-encoder,RDAE),并用RDAE替换混合激励线性预测编码(Mixed excitation linear prediction,MELP)语音编码器中LSF参数的矢量量化方法。测试结果表明,改进后的算法在损失一定模型似然度的条件下获得了重构性能的提升,当RDAE隐藏层结点设为19bit时,本文方法所测得的加权LSF距离、重构语音质量、谱失真指标在训练集和测试集上均优于25bit矢量量化方法,即利用本文方法改进的MELP编码器,在不降低语音质量的条件下,可将MELP编码速率从2.4kb/s降低至2.1kb/s,编码速率降低了12.5%。展开更多
在混合激励线性预测(mixed excitation linear prediction,MELP)模型的基础上,以超帧为单位,采用多帧联合编码技术,分模式对子帧的语音特征参数进行联合量化,实现了一种码率为600 bit/s的声码器。为了进一步减小量化误差,设计出了一种...在混合激励线性预测(mixed excitation linear prediction,MELP)模型的基础上,以超帧为单位,采用多帧联合编码技术,分模式对子帧的语音特征参数进行联合量化,实现了一种码率为600 bit/s的声码器。为了进一步减小量化误差,设计出了一种基于高斯混合模型的预测分类分裂矢量量化器(predictive switched split vector quantization based on Gauss mixture model,GMM-PSSVQ),该量化器对超帧中某些子帧的线谱频率进行量化,并利用帧间预测和线性插值等方法提高编码效率。采用谱失真对设计的矢量量化器进行性能评估,并分别与多级矢量量化和预测分裂矢量量化算法进行性能比较;通过客观感知语音质量评估和主观判断韵字测试对实现的声码器进行性能测试。测试结果表明,设计的矢量量化器平均谱失真最低,实现的声码器合成语音具有较高的清晰度和可懂度。展开更多
文摘为了提高深度模型的编码重构性能,本文为传统对比散度(Contrastive divergence,CD)添加了基于交叉熵的重构误差约束。利用改进后的算法训练了重构性深度自编码机(Reconstructive deep auto-encoder,RDAE),并用RDAE替换混合激励线性预测编码(Mixed excitation linear prediction,MELP)语音编码器中LSF参数的矢量量化方法。测试结果表明,改进后的算法在损失一定模型似然度的条件下获得了重构性能的提升,当RDAE隐藏层结点设为19bit时,本文方法所测得的加权LSF距离、重构语音质量、谱失真指标在训练集和测试集上均优于25bit矢量量化方法,即利用本文方法改进的MELP编码器,在不降低语音质量的条件下,可将MELP编码速率从2.4kb/s降低至2.1kb/s,编码速率降低了12.5%。
文摘在混合激励线性预测(mixed excitation linear prediction,MELP)模型的基础上,以超帧为单位,采用多帧联合编码技术,分模式对子帧的语音特征参数进行联合量化,实现了一种码率为600 bit/s的声码器。为了进一步减小量化误差,设计出了一种基于高斯混合模型的预测分类分裂矢量量化器(predictive switched split vector quantization based on Gauss mixture model,GMM-PSSVQ),该量化器对超帧中某些子帧的线谱频率进行量化,并利用帧间预测和线性插值等方法提高编码效率。采用谱失真对设计的矢量量化器进行性能评估,并分别与多级矢量量化和预测分裂矢量量化算法进行性能比较;通过客观感知语音质量评估和主观判断韵字测试对实现的声码器进行性能测试。测试结果表明,设计的矢量量化器平均谱失真最低,实现的声码器合成语音具有较高的清晰度和可懂度。