Improving the capacity of intersections is the key to enhancing road traffic systems.Benefiting from the application of Connected Automated Vehicles(CAVs)in the foreseeing future,it is promising to fully utilize spati...Improving the capacity of intersections is the key to enhancing road traffic systems.Benefiting from the application of Connected Automated Vehicles(CAVs)in the foreseeing future,it is promising to fully utilize spatiotemporal resources at intersections through cooperative and intelligent trajectory planning for CAVs.Lane-free traffic is currently a highly anticipated solution that can achieve more flexible trajectories without being limited by lane boundaries.However,it is challenging to apply efficient lane-free traffic to be compatible with the traditional intersection control mode for mixed flow composed of CAVs and Human-driving Vehicles(HVs).To address the research gap,this paper proposes a spatiotemporal-restricted A∗algorithm to obtain efficient and flexible lane-free trajectories for CAVs.First,we restrict the feasible area of the heuristic search algorithm by considering the feasible area and orientation of vehicles to maintain the trajectory directionality of different turning behaviors.Second,we propose a spatiotemporal sparse sampling method by defining the four-dimensional spatiotemporal grid to accelerate the execution of the heuristic search algorithm.Third,we consider the motions of HVs as dynamic obstacles with rational trajectory fluctuation during the process of trajectory planning for CAVs.The proposed method can retain the advantage of efficiently exploring feasible trajectories through the hybrid A*algorithm,while also utilizing multiple spatiotemporal constraints to accelerate solution efficiency.The experimental results of the simulated and real scenarios with mixed flows show that the proposed model can continuously enhance traffic efficiency and fuel economy as the penetration of CAVs gradually increases.展开更多
This paper treats the flow instabilities in a mixed flow pump with a vaned diffuser. Test pump has a positive slope of a head-flow performance curve at 65% flow rate of BEP (Best Efficiency Point) because of a rotatin...This paper treats the flow instabilities in a mixed flow pump with a vaned diffuser. Test pump has a positive slope of a head-flow performance curve at 65% flow rate of BEP (Best Efficiency Point) because of a rotating stall. Dynamic Particle Image Velocimetry (PIV) and pressure fluctuation measurements are used for investigating the propagation mechanism of a rotating stall. It was found that unstable performance was caused by periodical large scale abrupt backflow generated from the vaned diffuser to the outlet of impeller. Further, the relation between the static pressure at the inlet of diffuser vane and the internal flow condition was clarified. From these experimental results, in order to improve the positive slope of a head-flow performance curve, to suppress the growth of strong vortex toward the inlet of diffuser vane was proved to be a key point.展开更多
The interaction between ship and surrounding fluids generates the water-air-bubble mixed flow laden with numerous droplets and bubbles.The water-air-bubble mixed flow is a complex multi-phase flow phenomenon,which inv...The interaction between ship and surrounding fluids generates the water-air-bubble mixed flow laden with numerous droplets and bubbles.The water-air-bubble mixed flow is a complex multi-phase flow phenomenon,which involves intense air-water mixture,complex evolution of interface shape,interactions between multi-scale flow structures and strong turbulent fluctuations.Based on the field observations at sea,a large range of white water-air-bubble flow exists widely around a large-scale sailing ship,and directly affects the hydrodynamic performance of ship from various aspects.This paper reviews the research progress of water-air-bubble mixed flow around a ship.Current knowledge about the formation and evolution mechanism are introduced firstly.Then,the effects of the water-air-bubble mixed flow on ship performance are further reviewed,the main concerns are ship resistance,propulsion performance,slamming and maneuverability.Finally,the future research prospects are summarized.展开更多
Performance of mixed flow compressor with un-shrouded impeller strongly depends upon unsteady, asymmetrical flow fields in the axial directions. The flow through the mixed flow impeller is complex due to three-dimensi...Performance of mixed flow compressor with un-shrouded impeller strongly depends upon unsteady, asymmetrical flow fields in the axial directions. The flow through the mixed flow impeller is complex due to three-dimensional nature of geometry. In mixed flow impeller, there are clearances between the rotating impeller blades and the casing as the high pressure ratio compressors are usually open shrouded impellers. As a result, certain amount of reduction in the performance is unavoidable due to clearance flows. In the present investigations, numerical analysis is performed using a commercial code to investigate tip clearance effects on through flow. The performance of mixed flow impeller with four different clearances between impeller and stationary shroud are evaluated and compared with experimental results. The impeller performance map was obtained for different operating speeds and mass flow rates with different tip clearances. The result shows that the tip leakage flow strongly interacts with mainstream and contributes to total pressure loss and performance reduction. The pressure and performance decrement are approximately linearly proportional to the gap between impeller and stationary shroud.The analysis showed scope for improvement in design of the compressor for better performance in terms of efficiency and operating range.展开更多
Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhau...Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.展开更多
We present the formal derivation of a new unidirectional model for unsteady mixed flows in nonuniform closed water pipes. In the case of free surface incompressible flows, the FS-model is formally obtained, using form...We present the formal derivation of a new unidirectional model for unsteady mixed flows in nonuniform closed water pipes. In the case of free surface incompressible flows, the FS-model is formally obtained, using formal asymptotic analysis, which is an extension to more classical shallow water models. In the same way, when the pipe is full, we propose the P-model, which describes the evolution of a compressible inviscid flow, close to gas dynamics equations in a nozzle. In order to cope with the transition between a free surface state and a pressured (i.e., compressible) state, we propose a mixed model, the PFS-model, taking into account changes of section and slope variation.展开更多
To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplification...To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed.展开更多
To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous ...To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries.展开更多
To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and over...To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles. By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%. Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low. Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle density increases. The results also stress the necessity for separating motorized vehicles from non-motorized vehicles.展开更多
Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary condi...Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.展开更多
In this paper, the characteristics of synchronized traffic in mixed traffic flow are investigated based on the braking light model. By introducing the energy dissipation and the distribution of slowdown vehicles, the ...In this paper, the characteristics of synchronized traffic in mixed traffic flow are investigated based on the braking light model. By introducing the energy dissipation and the distribution of slowdown vehicles, the effects of the maximum velocity, the mixing ratio, and the length of vehicles on the synchronized flow are discussed. It is found that the maximum velocity plays a great role in the synchronized flow in mixed traffic. The energy dissipation and the distribution of slowdown vehicles in the synchronized flow region are greatly different from those in free flow and a traffic jamming region. When all of vehicles have the same maximum velocity with Vmax 〉 15, the mixed traffic significantly displays synchronized flow, which has been demonstrated by the relation between flow rate and occupancy and estimation of the cross-correlation function. Moreover, the energy dissipation in the synchronized flow region does not increase with occupancy. The distribution of slowdown vehicles shows a changeless platform in the synchronized flow region. This is an interesting phenomenon. It helps to deeply understand the synchronized flow and greatly reduce the energy dissipation of traffic flow.展开更多
Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity...Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.展开更多
The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into o...The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into ordinary differential equations (ODEs) by appropriate transformations. The transformed equations are solved successfully by a modern and powerful technique. The effects of the emerging parameters on the flow and heat transfer characteristics are studied and examined. The values of the skin friction coefficient and the local Nusselt number are tabulated and analyzed.展开更多
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is...This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.展开更多
The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical...The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.展开更多
Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model ...Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.展开更多
As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highw...As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highway system with two opposing directions under the above two modes are established considering car and truck mixed running. Through computer numerical simulating, the fundamental diagrams with different parameters are obtained, and after the analysis of density-flux diagrams, the variation discipline of flux with traffic density under different control models is gained. The results indicate that, compared with lane-control, utilization ratio of road can be further improved with speed-control when the truck number increases. The research result is of great significance for reasonable providing theoretical guidance for highway traffic control.展开更多
The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the...The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the axisymmetric countercurrent mixing shear flow. One is the shear layer self-excited oscillation mode corresponding to the high Reynolds number regime and the other is the jet column self-excited oscillation mode corresponding to the low Reynolds number regime in the case of the velocity ratio ranging from I to 1.5. Analyzing the auto-power spectrum, self-correlation-function and three dimensional reconstructed phase trajectory, the route to chaos through three Hopf bifurcations intercepted by an intermittence of the dynamical system corresponding to the axisymmetric countercurrent mixing shear flow was discovered when the velocity ratio is equal to 1.32.展开更多
The flow and the temperature in the threestream mixing flow of the lobed nozzle mixer-ejector with double-wall diffuser are numerically investigated. The domain of computation is divided into sub-domalns according to ...The flow and the temperature in the threestream mixing flow of the lobed nozzle mixer-ejector with double-wall diffuser are numerically investigated. The domain of computation is divided into sub-domalns according to the shapes of the double-plate and lobed nozzle. The three-dimensional body-fitted coordinated grids are generated respectively in these sub-domains by solving Lapalace's equations. Grids are dense on the boundaries and orthogonal at the lobe. The grids of all sub-domains compose the whole grid of the domain. In order to avoid the divergence of the computation as the serious non-orthogonality of the grid from the lobe, the co-located grid, SIMPLEC and Chen-Kim modified k-εturbulence model are applied. The great viscosity, the linear and simultaneous cooperation under-relaxation factors are used to solve the coupling of the fluid and solid. Results show that the air is ejected into the double wall section to form the cooling flow. The wall temperature of the double-wall diffuser is lower than that of the single-wall diffuser. The average wall temperature goes down as the diffuser angle increases at the range of 0~5°,otherwise, the result at the range of 5~10°is opposite.展开更多
基金This work was supported by the Science and Technology Commission of Shanghai Municipality(Nos.22YF1461400 and 22DZ1100102)the National Key R&D Program of China(No.2022ZD0160104).
文摘Improving the capacity of intersections is the key to enhancing road traffic systems.Benefiting from the application of Connected Automated Vehicles(CAVs)in the foreseeing future,it is promising to fully utilize spatiotemporal resources at intersections through cooperative and intelligent trajectory planning for CAVs.Lane-free traffic is currently a highly anticipated solution that can achieve more flexible trajectories without being limited by lane boundaries.However,it is challenging to apply efficient lane-free traffic to be compatible with the traditional intersection control mode for mixed flow composed of CAVs and Human-driving Vehicles(HVs).To address the research gap,this paper proposes a spatiotemporal-restricted A∗algorithm to obtain efficient and flexible lane-free trajectories for CAVs.First,we restrict the feasible area of the heuristic search algorithm by considering the feasible area and orientation of vehicles to maintain the trajectory directionality of different turning behaviors.Second,we propose a spatiotemporal sparse sampling method by defining the four-dimensional spatiotemporal grid to accelerate the execution of the heuristic search algorithm.Third,we consider the motions of HVs as dynamic obstacles with rational trajectory fluctuation during the process of trajectory planning for CAVs.The proposed method can retain the advantage of efficiently exploring feasible trajectories through the hybrid A*algorithm,while also utilizing multiple spatiotemporal constraints to accelerate solution efficiency.The experimental results of the simulated and real scenarios with mixed flows show that the proposed model can continuously enhance traffic efficiency and fuel economy as the penetration of CAVs gradually increases.
文摘This paper treats the flow instabilities in a mixed flow pump with a vaned diffuser. Test pump has a positive slope of a head-flow performance curve at 65% flow rate of BEP (Best Efficiency Point) because of a rotating stall. Dynamic Particle Image Velocimetry (PIV) and pressure fluctuation measurements are used for investigating the propagation mechanism of a rotating stall. It was found that unstable performance was caused by periodical large scale abrupt backflow generated from the vaned diffuser to the outlet of impeller. Further, the relation between the static pressure at the inlet of diffuser vane and the internal flow condition was clarified. From these experimental results, in order to improve the positive slope of a head-flow performance curve, to suppress the growth of strong vortex toward the inlet of diffuser vane was proved to be a key point.
基金supported by the National Natural Science Foundation of China(Grant Nos.52131102,51879159)the National Key Research,Development Program of China(Grant No.2019YFB1704200).
文摘The interaction between ship and surrounding fluids generates the water-air-bubble mixed flow laden with numerous droplets and bubbles.The water-air-bubble mixed flow is a complex multi-phase flow phenomenon,which involves intense air-water mixture,complex evolution of interface shape,interactions between multi-scale flow structures and strong turbulent fluctuations.Based on the field observations at sea,a large range of white water-air-bubble flow exists widely around a large-scale sailing ship,and directly affects the hydrodynamic performance of ship from various aspects.This paper reviews the research progress of water-air-bubble mixed flow around a ship.Current knowledge about the formation and evolution mechanism are introduced firstly.Then,the effects of the water-air-bubble mixed flow on ship performance are further reviewed,the main concerns are ship resistance,propulsion performance,slamming and maneuverability.Finally,the future research prospects are summarized.
文摘Performance of mixed flow compressor with un-shrouded impeller strongly depends upon unsteady, asymmetrical flow fields in the axial directions. The flow through the mixed flow impeller is complex due to three-dimensional nature of geometry. In mixed flow impeller, there are clearances between the rotating impeller blades and the casing as the high pressure ratio compressors are usually open shrouded impellers. As a result, certain amount of reduction in the performance is unavoidable due to clearance flows. In the present investigations, numerical analysis is performed using a commercial code to investigate tip clearance effects on through flow. The performance of mixed flow impeller with four different clearances between impeller and stationary shroud are evaluated and compared with experimental results. The impeller performance map was obtained for different operating speeds and mass flow rates with different tip clearances. The result shows that the tip leakage flow strongly interacts with mainstream and contributes to total pressure loss and performance reduction. The pressure and performance decrement are approximately linearly proportional to the gap between impeller and stationary shroud.The analysis showed scope for improvement in design of the compressor for better performance in terms of efficiency and operating range.
基金supported by the National Basic Research Program of China("973"Program)(Grant No.2011CB707204)the National Natural Science Foundation of China(Grant No.50706020)
文摘Recovery of heat energy from internal combustion engine exhaust will achieve significant road transportation CO2 reduction. Turbocharging and turbogenerating are most commonly used technologies to recover engine exhaust heat energy.Engine exhaust pulse flow can significantly affect the turbine performance of turbocharging and turbogenerating systems,and it is necessary to consider the pulse flow effects in turbine design and performance analysis.An investigation was carried out by numerical simulation on the mixed flow turbine pulse flow performance and flow fields.Results showed that the variations of the turbine efficiency and flowfiled under pulsating flow conditions demonstrate significant unsteady effects.The effect of blade leading edge sweep on turbine pulse flow performance was studied.It is shown that increasing of the leading edge sweep angle can improve the turbine average instantaneous efficiency by about 2 percent under pulsating flow conditions.
文摘We present the formal derivation of a new unidirectional model for unsteady mixed flows in nonuniform closed water pipes. In the case of free surface incompressible flows, the FS-model is formally obtained, using formal asymptotic analysis, which is an extension to more classical shallow water models. In the same way, when the pipe is full, we propose the P-model, which describes the evolution of a compressible inviscid flow, close to gas dynamics equations in a nozzle. In order to cope with the transition between a free surface state and a pressured (i.e., compressible) state, we propose a mixed model, the PFS-model, taking into account changes of section and slope variation.
基金National Basic Research Program of China(973 Program,Grant No.2015CB057301)Research and Innovation in Science and Technology Major Project of Liaoning Province,China(Grant No.201410001)Collaborative Innovation Center of Major Machine Manufacturing in Liaoning Province,China
文摘To improve the design speed and reduce the design cost for the previous blade design method, a modified inverse design method is presented. In the new method, after a series of physical and mathematical simplifications, a sail?like constrained area is proposed, which can be used to configure di erent runner blade shapes. Then, the new method is applied to redesign and optimize the runner blade of the scale core component of the 1400?MW canned nuclear coolant pump in an established multi?optimization system compromising the Computational Fluid Dynamics(CFD) analysis, the Response Surface Methodology(RSM) and the Non?dominated Sorting Genetic Algorithm?II(NSGA?II). After the execution of the optimization procedure, three optimal samples were ultimately obtained. Then, through comparative analysis using the target runner blade, it was found that the maximum e ciency improvement reached 1.6%, while the head improvement was about 10%. Overall, a promising runner blade inverse design method which will benefit the hydraulic design of the mixed?flow pump has been proposed.
基金Project(2012CB725400) supported by the National Basic Research Program of ChinaProjects(70901005, 71071016, 71131001) supported by the National Natural Science Foundation of ChinaProject(2011JBM055) supported by the Fundamental Research Funds for the Central Universities of China
文摘To determine how bus stop design influences mixed traffic operation near Chinese bus stops,a new theoretical method was developed by using additive-conflict-flows procedure.The procedure was extended from homogeneous traffic flow to mixed traffic flow.Based on the procedure and queuing theory,car capacity and speed models were proposed for three types of bus stops including curbside,bus bay and bicycle detour.The effects of various combinations of bus stop type,traffic volume,bus dwell time,and berth number on traffic operations were investigated.The results indicate that traffic volume,bus dwell time and berth number have negative effects on traffic operations for any type of bus stops.For different types of bus stops,at car volumes above approximately 200 vehicles per hour,the bus bay and bicycle detour designs provide more benefits than the curbside design.As traffic volume increases,the benefit firstly increases in uncongested conditions and then decreases in congested conditions.It reaches the maximum at car volumes nearly 1 100 vehicles per hour.The results can be used to aid in the selection of a preferred bus stop design for a given traffic volume in developing countries.
基金Supported by the National Basic Research Program of China under Grant No.2006CB705500the National Natural Science Foundation of China under Grant Nos.70631001 and 70701004
文摘To study the dynamics of mixed traffic flow consisting of motorized and non-motorized vehicles, a carfollowing model based on the principle of collision free and cautious driving is proposed. Lateral friction and overlapping driving are introduced to describe the interactions between motorized vehicles and non-motorized vehicles. By numerical simulations, the flux-density relation, the temporal-spatial dynamics, and the velocity evolution are investigated in detail The results indicate non-motorized vehicles have a significant impact on the motorized vehicle flow and cause the maximum flux to decline by about 13%. Non-motorized vehicles can decrease the motorized vehicle velocity and cause velocity oscillation when the motorized vehicle density is low. Moreover, non-motorized vehicles show a significant damping effect on the oscillating velocity when the density is medium and high, and such an effect weakens as motorized vehicle density increases. The results also stress the necessity for separating motorized vehicles from non-motorized vehicles.
文摘Mixed convection flow of magnetohydrodynamic(MHD) Jeffrey nanofluid over a radially stretching surface with radiative surface is studied. Radial sheet is considered to be convectively heated. Convective boundary conditions through heat and mass are employed. The governing boundary layer equations are transformed into ordinary differential equations. Convergent series solutions of the resulting problems are derived. Emphasis has been focused on studying the effects of mixed convection, thermal radiation, magnetic field and nanoparticles on the velocity, temperature and concentration fields. Numerical values of the physical parameters involved in the problem are computed for the local Nusselt and Sherwood numbers are computed.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10865001 and 11047003)the National Basic Research Program of China (Grant No. 2006CB705500)the Graduate Student Innovative Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 105930903077)
文摘In this paper, the characteristics of synchronized traffic in mixed traffic flow are investigated based on the braking light model. By introducing the energy dissipation and the distribution of slowdown vehicles, the effects of the maximum velocity, the mixing ratio, and the length of vehicles on the synchronized flow are discussed. It is found that the maximum velocity plays a great role in the synchronized flow in mixed traffic. The energy dissipation and the distribution of slowdown vehicles in the synchronized flow region are greatly different from those in free flow and a traffic jamming region. When all of vehicles have the same maximum velocity with Vmax 〉 15, the mixed traffic significantly displays synchronized flow, which has been demonstrated by the relation between flow rate and occupancy and estimation of the cross-correlation function. Moreover, the energy dissipation in the synchronized flow region does not increase with occupancy. The distribution of slowdown vehicles shows a changeless platform in the synchronized flow region. This is an interesting phenomenon. It helps to deeply understand the synchronized flow and greatly reduce the energy dissipation of traffic flow.
基金Supported by the National Natural Science Foundation of China(50478071)
文摘Highway capacity is defined as maximum volume of traffic flow through the particular highway section under given traffic conditions, road conditions and so on. Highway construction and management is judged by capacity standard. The reasonable scale and time of highway construction, rational network structure and optimal management mode of highway network can be determined by analyzing the fitness between capacity and traffic volume. All over the world, highway capacity is studied to different extent in different country. Based on the gap acceptance theory, the mixed traffic flow composed of two representative vehicle types heavy and light vehicles is analyzed with probability theory. Capacity model of the minor mixed traffic flows crossing m major lanes, on which the traffic flows fix in with M3 distributed headway, on the unsignalized intersection is set up, and it is an extension of minor lane capacity theory for one vehicle-type and one major-lane traffic flow.
文摘The unsteady mixed convection squeezing flow of an incompressible Newtonian fluid between two vertical parallel planes is discussed. The fluid is electrically conducting. The governing equations are transformed into ordinary differential equations (ODEs) by appropriate transformations. The transformed equations are solved successfully by a modern and powerful technique. The effects of the emerging parameters on the flow and heat transfer characteristics are studied and examined. The values of the skin friction coefficient and the local Nusselt number are tabulated and analyzed.
基金Project supported by the Executive Agency for Higher Education Research Development and Innovation Funding of Romania(No.PN-III-P4-PCE-2021-0993)。
文摘This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics.
基金supported by the National Science Foundation of China(Grant No.42177172)China Geological Survey Project(Grant No.DD20230538).
文摘The recognition,repetition and prediction of the post-failure motion process of long-runout landslides are key scientific problems in the prevention and mitigation of geological disasters.In this study,a new numerical method involving LPF3D based on a multialgorithm and multiconstitutive model was proposed to simulate long-runout landslides with high precision and efficiency.The following results were obtained:(a)The motion process of landslides showed a steric effect with mobility,including gradual disintegration and spreading.The sliding mass can be divided into three states(dense,dilute and ultradilute)in the motion process,which can be solved by three dynamic regimes(friction,collision,and inertial);(b)Coupling simulation between the solid grain and liquid phases was achieved,focusing on drag force influences;(c)Different algorithms and constitutive models were employed in phase-state simulations.The volume fraction is an important indicator to distinguish different state types and solid‒liquid ratios.The flume experimental results were favorably validated against long-runout landslide case data;and(d)In this method,matched dynamic numerical modeling was developed to better capture the realistic motion process of long-runout landslides,and the advantages of continuum media and discrete media were combined to improve the computational accuracy and efficiency.This new method can reflect the realistic physical and mechanical processes in long-runout landslide motion and provide a suitable method for risk assessment and pre-failure prediction.
基金supported by the National Key Research and Development Program of China(2017YFB0903300).
文摘Recently,power electronic transformers(PETs)have received widespread attention owing to their flexible networking,diverse operating modes,and abundant control objects.In this study,we established a steady-state model of PETs and applied it to the power flow calculation of AC-DC hybrid systems with PETs,considering the topology,power balance,loss,and control characteristics of multi-port PETs.To address new problems caused by the introduction of the PET port and control equations to the power flow calculation,this study proposes an iterative method of AC-DC mixed power flow decoupling based on step optimization,which can achieve AC-DC decoupling and effectively improve convergence.The results show that the proposed algorithm improves the iterative method and overcomes the overcorrection and initial value sensitivity problems of conventional iterative algorithms.
文摘As two kinds of management modes of highway tramc control, lane-control, and speed-control produce different effect under different conditions. In this paper, traffic flow cellular automaton models for four-lane highway system with two opposing directions under the above two modes are established considering car and truck mixed running. Through computer numerical simulating, the fundamental diagrams with different parameters are obtained, and after the analysis of density-flux diagrams, the variation discipline of flux with traffic density under different control models is gained. The results indicate that, compared with lane-control, utilization ratio of road can be further improved with speed-control when the truck number increases. The research result is of great significance for reasonable providing theoretical guidance for highway traffic control.
文摘The coherent structures and the chaotic phenomena in the transition of the axisymmetric countercurrent mixing shear flow were investigated experimentally. Two kinds of self-excited oscillation modes could exist in the axisymmetric countercurrent mixing shear flow. One is the shear layer self-excited oscillation mode corresponding to the high Reynolds number regime and the other is the jet column self-excited oscillation mode corresponding to the low Reynolds number regime in the case of the velocity ratio ranging from I to 1.5. Analyzing the auto-power spectrum, self-correlation-function and three dimensional reconstructed phase trajectory, the route to chaos through three Hopf bifurcations intercepted by an intermittence of the dynamical system corresponding to the axisymmetric countercurrent mixing shear flow was discovered when the velocity ratio is equal to 1.32.
文摘The flow and the temperature in the threestream mixing flow of the lobed nozzle mixer-ejector with double-wall diffuser are numerically investigated. The domain of computation is divided into sub-domalns according to the shapes of the double-plate and lobed nozzle. The three-dimensional body-fitted coordinated grids are generated respectively in these sub-domains by solving Lapalace's equations. Grids are dense on the boundaries and orthogonal at the lobe. The grids of all sub-domains compose the whole grid of the domain. In order to avoid the divergence of the computation as the serious non-orthogonality of the grid from the lobe, the co-located grid, SIMPLEC and Chen-Kim modified k-εturbulence model are applied. The great viscosity, the linear and simultaneous cooperation under-relaxation factors are used to solve the coupling of the fluid and solid. Results show that the air is ejected into the double wall section to form the cooling flow. The wall temperature of the double-wall diffuser is lower than that of the single-wall diffuser. The average wall temperature goes down as the diffuser angle increases at the range of 0~5°,otherwise, the result at the range of 5~10°is opposite.