Combined cycle plants (CCs) are broadly used all over the world. The inclusion of CCs into the optimal resource scheduling causes difficulties because they can be operated in different operating configuration modes ba...Combined cycle plants (CCs) are broadly used all over the world. The inclusion of CCs into the optimal resource scheduling causes difficulties because they can be operated in different operating configuration modes based on the number of combustion and steam turbines. In this paper a model CCs based on a mixed integer linear programming approach to be included into an optimal short term resource optimization problem is presented. The proposed method allows modeling of CCs in different modes of operation taking into account the non convex operating costs for the different combined cycle mode of operation.展开更多
In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such fa...In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such facilities were obtained after using two routines together: Facility Location and Transportation Problem, when compared with optimal solutions from exact mathematical models, based on Mixed Integer Linear Programming (MILP), developed externally for the GIS. The models were applied to three simulations: the first one proposes opening factories and customer allocation in the state of Sao Paulo, Brazil;the second involves a wholesaler and a study of location and allocation of distribution centres for retail customers;and the third one involves the location of day-care centers and allocation of demand (0 - 3 years old children). The results showed that when considering facility capacity, the MILP optimising model presents results up to 37% better than the GIS and proposes different locations to open new facilities.展开更多
The solar and wind renewable energy is developing very rapidly to fulfill the energy gap. This specific increasing share of renewable energy is a reaction to the ecological trepidations to conciliate economics with se...The solar and wind renewable energy is developing very rapidly to fulfill the energy gap. This specific increasing share of renewable energy is a reaction to the ecological trepidations to conciliate economics with security due to the new challenges in power system supply. In solar and wind renewable energy, the only partially predictable is the output with very low controllability which creates unit commitment problems in thermal units. In this research paper, a different linear formulation via mixed integer is presented that only requires “binary variables” and restraints concerning earlier stated models. The framework of this model allows precisely the costs of time-dependent startup & intertemporal limitations, for example, minimum up & down times and a ramping limit. To solve the unit commitment problem efficiently, a commercially available linear programming of mixed-integer is applied for sizeable practical scale. The results of the simulation are shown in conclusions.展开更多
在节能减排和激烈同行竞争的环境下,应用服务器集群的能耗与性能优化十分迫切.针对已有研究在性能指标和实时性方面的不足,提出一种集群能耗与性能实时优化方案.该方案结合采用线性加权法和主目标法优化集群功率与请求丢弃率这两个目标...在节能减排和激烈同行竞争的环境下,应用服务器集群的能耗与性能优化十分迫切.针对已有研究在性能指标和实时性方面的不足,提出一种集群能耗与性能实时优化方案.该方案结合采用线性加权法和主目标法优化集群功率与请求丢弃率这两个目标,将双目标优化转换成一个单目标约束优化.首先基于CPU频率等效连续调整模式下的服务器负载-功率模型,定义很少的变量将集群优化描述成混合整数二次规划问题,然后采用变量拆分和变量转换将其转化成混合整数线性规划(mixed integer linear programming,MILP)问题并引入特殊顺序集约束,最后采用Gurobi优化器求解该MILP.通过对CPU频率调整的进一步优化,大幅度减少了CPU频率的切换.多种场景下的测试表明,该方案的求解时间约在10 ms左右,特殊顺序集约束的引入使求解时间更为稳定,从而能够保证优化的实时进行.展开更多
A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Ak...A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.展开更多
Approaches based on integer linear programming have been recently proposed for topology optimization in wireless sensor networks. They are, however, based on over-theoretical, unrealistic models. Our aim is to show th...Approaches based on integer linear programming have been recently proposed for topology optimization in wireless sensor networks. They are, however, based on over-theoretical, unrealistic models. Our aim is to show that it is possible to accommodate realistic models for energy consumption and communication protocols into integer linear programming. We analyze the maximum lifetime broadcasting topology problem and we present realistic models that are also shown to provide efficient and practical solving tools. We present a strategy to substantially speed up the convergence of the solving process of our algorithm. This strategy introduces a practical drawback, however, in the characteristics of the optimal solutions retrieved. A method to overcome this drawback is discussed. Computational experiments are reported.展开更多
Cloud computing involves remote server deployments with public net-work infrastructures that allow clients to access computational resources.Virtual Machines(VMs)are supplied on requests and launched without interacti...Cloud computing involves remote server deployments with public net-work infrastructures that allow clients to access computational resources.Virtual Machines(VMs)are supplied on requests and launched without interactions from service providers.Intruders can target these servers and establish malicious con-nections on VMs for carrying out attacks on other clustered VMs.The existing system has issues with execution time and false-positive rates.Hence,the overall system performance is degraded considerably.The proposed approach is designed to eliminate Cross-VM side attacks and VM escape and hide the server’s position so that the opponent cannot track the target server beyond a certain point.Every request is passed from source to destination via one broadcast domain to confuse the opponent and avoid them from tracking the server’s position.Allocation of SECURITY Resources accepts a safety game in a simple format as input andfinds the best coverage vector for the opponent using a Stackelberg Equilibrium(SSE)technique.A Mixed Integer Linear Programming(MILP)framework is used in the algorithm.The VM challenge is reduced by afirewall-based controlling mechanism combining behavior-based detection and signature-based virus detection.The pro-posed method is focused on detecting malware attacks effectively and providing better security for the VMs.Finally,the experimental results indicate that the pro-posed security method is efficient.It consumes minimum execution time,better false positive rate,accuracy,and memory usage than the conventional approach.展开更多
文摘Combined cycle plants (CCs) are broadly used all over the world. The inclusion of CCs into the optimal resource scheduling causes difficulties because they can be operated in different operating configuration modes based on the number of combustion and steam turbines. In this paper a model CCs based on a mixed integer linear programming approach to be included into an optimal short term resource optimization problem is presented. The proposed method allows modeling of CCs in different modes of operation taking into account the non convex operating costs for the different combined cycle mode of operation.
文摘In this study, we aimed to assess the solution quality for location-allocation problems from facilities generated by the software TransCAD®?, a Geographic Information System for Transportation (GIS-T). Such facilities were obtained after using two routines together: Facility Location and Transportation Problem, when compared with optimal solutions from exact mathematical models, based on Mixed Integer Linear Programming (MILP), developed externally for the GIS. The models were applied to three simulations: the first one proposes opening factories and customer allocation in the state of Sao Paulo, Brazil;the second involves a wholesaler and a study of location and allocation of distribution centres for retail customers;and the third one involves the location of day-care centers and allocation of demand (0 - 3 years old children). The results showed that when considering facility capacity, the MILP optimising model presents results up to 37% better than the GIS and proposes different locations to open new facilities.
文摘The solar and wind renewable energy is developing very rapidly to fulfill the energy gap. This specific increasing share of renewable energy is a reaction to the ecological trepidations to conciliate economics with security due to the new challenges in power system supply. In solar and wind renewable energy, the only partially predictable is the output with very low controllability which creates unit commitment problems in thermal units. In this research paper, a different linear formulation via mixed integer is presented that only requires “binary variables” and restraints concerning earlier stated models. The framework of this model allows precisely the costs of time-dependent startup & intertemporal limitations, for example, minimum up & down times and a ramping limit. To solve the unit commitment problem efficiently, a commercially available linear programming of mixed-integer is applied for sizeable practical scale. The results of the simulation are shown in conclusions.
文摘在节能减排和激烈同行竞争的环境下,应用服务器集群的能耗与性能优化十分迫切.针对已有研究在性能指标和实时性方面的不足,提出一种集群能耗与性能实时优化方案.该方案结合采用线性加权法和主目标法优化集群功率与请求丢弃率这两个目标,将双目标优化转换成一个单目标约束优化.首先基于CPU频率等效连续调整模式下的服务器负载-功率模型,定义很少的变量将集群优化描述成混合整数二次规划问题,然后采用变量拆分和变量转换将其转化成混合整数线性规划(mixed integer linear programming,MILP)问题并引入特殊顺序集约束,最后采用Gurobi优化器求解该MILP.通过对CPU频率调整的进一步优化,大幅度减少了CPU频率的切换.多种场景下的测试表明,该方案的求解时间约在10 ms左右,特殊顺序集约束的引入使求解时间更为稳定,从而能够保证优化的实时进行.
基金Project supported by the National Creative Research Groups Science Foundation of China (No. 60421002)the National "Tenth Five-Year" Science and Technology Research Program of China (No.2004BA204B08)
文摘A novel mixed integer linear programming (NMILP) model for detection of gross errors is presented in this paper. Yamamura et al.(1988) designed a model for detection of gross errors and data reconciliation based on Akaike information cri- terion (AIC). But much computational cost is needed due to its combinational nature. A mixed integer linear programming (MILP) approach was performed to reduce the computational cost and enhance the robustness. But it loses the super performance of maximum likelihood estimation. To reduce the computational cost and have the merit of maximum likelihood estimation, the simultaneous data reconciliation method in an MILP framework is decomposed and replaced by an NMILP subproblem and a quadratic programming (QP) or a least squares estimation (LSE) subproblem. Simulation result of an industrial case shows the high efficiency of the method.
文摘Approaches based on integer linear programming have been recently proposed for topology optimization in wireless sensor networks. They are, however, based on over-theoretical, unrealistic models. Our aim is to show that it is possible to accommodate realistic models for energy consumption and communication protocols into integer linear programming. We analyze the maximum lifetime broadcasting topology problem and we present realistic models that are also shown to provide efficient and practical solving tools. We present a strategy to substantially speed up the convergence of the solving process of our algorithm. This strategy introduces a practical drawback, however, in the characteristics of the optimal solutions retrieved. A method to overcome this drawback is discussed. Computational experiments are reported.
文摘Cloud computing involves remote server deployments with public net-work infrastructures that allow clients to access computational resources.Virtual Machines(VMs)are supplied on requests and launched without interactions from service providers.Intruders can target these servers and establish malicious con-nections on VMs for carrying out attacks on other clustered VMs.The existing system has issues with execution time and false-positive rates.Hence,the overall system performance is degraded considerably.The proposed approach is designed to eliminate Cross-VM side attacks and VM escape and hide the server’s position so that the opponent cannot track the target server beyond a certain point.Every request is passed from source to destination via one broadcast domain to confuse the opponent and avoid them from tracking the server’s position.Allocation of SECURITY Resources accepts a safety game in a simple format as input andfinds the best coverage vector for the opponent using a Stackelberg Equilibrium(SSE)technique.A Mixed Integer Linear Programming(MILP)framework is used in the algorithm.The VM challenge is reduced by afirewall-based controlling mechanism combining behavior-based detection and signature-based virus detection.The pro-posed method is focused on detecting malware attacks effectively and providing better security for the VMs.Finally,the experimental results indicate that the pro-posed security method is efficient.It consumes minimum execution time,better false positive rate,accuracy,and memory usage than the conventional approach.