期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
The Origin, Properties and Detection of Dark Matter and Dark Energy
1
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期749-774,共26页
The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent wi... The pictures from the James Webb Space Telescope (JWST) suggest that massive galaxies were already at the beginning of the expansion of the Universe because there was too short time to create them. It is consistent with the new cosmology presented within the Scale-Symmetric Theory (SST). The phase transitions of the initial inflation field described in SST lead to the Protoworld—its core was built of dark matter (DM). We show that the DAMA/LIBRA annual-modulation amplitude forced by the change of the Earth’s velocity (i.e. baryonic-matter (BM) velocity) in relation to the spinning DM field in our Galaxy’s halo should be very low. We calculated that in the DM-BM weak interactions are created single and entangled spacetime condensates with a lowest mass/energy of 0.807 keV—as the Higgs boson they can decay to two photons, so we can indirectly detect DM. Our results are consistent with the averaged DAMA/LIBRA/COSINE-100 curve describing the dependence of the event rate on the photon energy in single-hit events. We calculated the mean dark-matter-halo (DMH) mass around quasars, we also described the origin of the plateaux in the rotation curves for the massive spiral galaxies, the role of DM-loops in magnetars, the origin of CMB, the AGN-jet and galactic-halo production, and properties of dark energy (DE). 展开更多
关键词 New Cosmology dark matter DM-BM Weak Interactions DMH mass around Quasars Rotation Curves of Galaxies MAGNETARS CMB AGN-Jet Production Galactic-Halo Production dark energy
下载PDF
Unraveling the Quantum Web: The Vortex Theory of Mass and Matter Formation
2
作者 Nader Butto 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1195-1225,共31页
Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5... Mass plays a role in many physical phenomena, including the behavior of subatomic particles, the formation and behavior of stars and galaxies, and gravitational interactions between objects. The density of vacuum, 9.5 × 10−27 kg/m3, is a crucial parameter in the theory of cosmic inflation and is responsible for the accelerated expansion of the universe in its early stages. This vacuum energy interacts with matter and manifests itself as mass, which can be described as flow and vortex formation using the laws of hydrodynamics. The vortex model of elementary particles, in conjunction with the laws of hydrodynamics, provides an elegant explanation for the origin of mass and the relationship between mass and energy, with profound implications for the behavior of objects at high velocities and strong gravitational fields. The vacuum behaves as a compressible superfluid, thus elementary particles can be described as vortices of the vacuum. The equations of hydrodynamics for vortices can be applied to describe the nature and value of the mass of particles. The implications of understanding the nature of mass are vast and profound. From elucidating the fundamental properties of particles to informing the design of advanced materials and technologies, this knowledge is indispensable. It drives advancements across numerous fields, transforming both our theoretical understanding and practical capabilities. Continued research into the nature of mass promises to unlock further insights, fostering innovation and expanding the frontiers of science and technology. 展开更多
关键词 dark energy dark matter Vacuum mass Subatomic Particles Cosmic Inflation Virtual Particles Vortex Formation HYDRODYNAMICS Density
下载PDF
A Unifying Theory of Dark Energy, Dark Matter, and Baryonic Matter in the Positive-Negative Mass Universe Pair: Protogalaxy and Galaxy Evolutions
3
作者 Ding-Yu Chung 《Journal of Modern Physics》 2020年第7期1091-1122,共32页
This paper modifies the Farnes’ unifying theory of dark energy and dark matter which are negative-mass, created continuously from the negative-mass universe in the positive-negative mass universe pair. The first modi... This paper modifies the Farnes’ unifying theory of dark energy and dark matter which are negative-mass, created continuously from the negative-mass universe in the positive-negative mass universe pair. The first modification explains that observed dark energy is 68.6%, greater than 50% for the symmetrical positive-negative mass universe pair. This paper starts with the proposed positive-negative-mass 11D universe pair (without kinetic energy) which is transformed into the positive-negative mass 10D universe pair and the external dual gravities as in the Randall-Sundrum model, resulting in the four equal and separate universes consisting of the positive-mass 10D universe, the positive-mass massive external gravity, the negative-mass 10D universe and the negative-mass massive external gravity. The positive-mass 10D universe is transformed into 4D universe (home universe) with kinetic energy through the inflation and the Big Bang to create positive-mass dark matter which is five times of positive-mass baryonic matter. The other three universes without kinetic energy oscillate between 10D and 10D through 4D, resulting in the hidden universes when D > 4 and dark energy when D = 4, which is created continuously to our 4D home universe with the maximum dark energy = 3/4 = 75%. In the second modification to explain dark matter in the CMB, dark matter initially is not repulsive. The condensed baryonic gas at the critical surface density induces dark matter repulsive force to transform dark matter in the region into repulsive dark matter repulsing one another. The calculated percentages of dark energy, dark matter, and baryonic matter are 68.6 (as an input from the observation), 26 and 5.2, respectively, in agreement with observed 68.6, 26.5 and 4.9, respectively, and dark energy started in 4.33 billion years ago in agreement with the observed 4.71 <span style="white-space:nowrap;">&plusmn;</span> 0.98 billion years ago. In conclusion, the modified Farnes’ unifying theory reinterprets the Farnes’ equations, and is a unifying theory of dark energy, dark matter, and baryonic matter in the positive-negative mass universe pair. The unifying theory explains protogalaxy and galaxy evolutions in agreement with the observations. 展开更多
关键词 Unifying Theory Farnes dark energy dark matter Baryonic matter Negative mass Positive-Negative mass Universe Pair Protogalaxy Evolution Galaxy Evolution
下载PDF
A Combined Heterotic String and Kähler Manifold Elucidation of Ordinary Energy,Dark Matter,Olbers’s Paradox and Pure Dark Energy Density of the Cosmos
4
作者 Mohamed S.El Naschie 《Journal of Modern Physics》 2017年第7期1101-1118,共18页
We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 K&auml;hler manifold to explain the mysterious nature of dark matter and its cou... We utilize the topological-geometrical structure imposed by the Heterotic superstring theory on spacetime in conjunction with the K3 K&auml;hler manifold to explain the mysterious nature of dark matter and its coupling to the pure dark energy density of the cosmos. The analogous situations in the case of a Kerr black hole as well as the redundant components of the Riemannian tensor are pointed out and the final result was found to be in complete agreement with all previous theoretical ones as well as all recent accurate measurements and cosmic observations. We conclude by commenting briefly on the Cantorian model of Zitterbewegung and the connection between Olbers’s paradox and dark energy. 展开更多
关键词 Heterotic Strings K3 Kahler Manifold dark matter pure Heterotic dark energy Einstein’s Relativity Accelerated Cosmic Expansion Negative Gravity Fractal Spacetime E-Infinity Theory Kerr Black Holes Geometry Kaluza-Klein Theory Dvoretzky’s Theorem Empty Set Zero Set Connes Noncommutative Geometry ‘tHooft Renormalon STATE Vector Reduction Density Matrix ‘tHooft Fractal Spacetime Transfinite Cellular Automata Interpretation of Quantum Mechanics ZITTERBEWEGUNG Olbers’s dark Sky Paradox
下载PDF
The World Physical Triad: Matter, Antimatter and “Dark Energy” in the Processes of Climatic Changes on the Earth 被引量:3
5
作者 Robert A. Sizov 《Journal of Modern Physics》 2016年第6期558-572,共15页
The opening and many years of research of magnetic spinor particles (real magnetic charges) in atoms and substance have enabled the author to formulate the conception of the Physical Triad, according which the real Wo... The opening and many years of research of magnetic spinor particles (real magnetic charges) in atoms and substance have enabled the author to formulate the conception of the Physical Triad, according which the real World consists of three fundamental phases: Matter, Antimatter and Energo-phase (Energo-medium). Particles of Matter are called spinors and particles of Antimatter are called antispinors. Energo-medium is a gasiform phase of high density that fills by himself all the infinite space of the real World. It consists of spinless and massless particles-energions. Spinor fields can be both flows energions (fields of Matter), so and anti-flow energions (fields of Antimatter). Atomic-shaped structures consisting of electric and magnetic spinor particles represent a Physical Mass (atoms, nucleons, etc.). The main characteristic of all varieties of Mass is its ability radiate gravitational field, which is a vortex electromagnetic field. All spinor particles are massless so as individually generate a gravitational field they can’t. All primary forces in the real World are implemented by means of Energo-medium, i.e. contact pressure its particles—energions. The spinor fields, including the gravitational field, myself the real of the power significance, have not. They are only intermediaries, inducing in Energo-medium its active (power) education, which is called “Dark Energy”. “Dark Energy” can be both positive, so and negative. Namely, a positive “Dark Energy”, which is associated with the technical activity of man, is responsible for stable climatic changes on Earth. Greenhouse gases are not the main “culprit” of climatic changes on our planet. However, these gases are the simplest indicator of the overall level of irreversible physical processes that stimulate the growth of the positive “Dark Energy” and are responsible for the negative thermal scenario on Earth. 展开更多
关键词 Magnetic and Electric Spinorial Particles (Spinors and Antispinors) Antielectrons Magnetons Antimagnetons Bispinor Physical mass Vortex Electromagnetic (Gravitational) Field matter ANTImatter Energo-Medium Energions dark energy Climatic Changes
下载PDF
Einstein’s Gravitational Field Approach to Dark Matter and Dark Energy—Geometric Particle Decay into the Vacuum Energy Generating Higgs Boson and Heavy Quark Mass
6
作者 Walter James Christensen 《Journal of Modern Physics》 2015年第10期1421-1439,共19页
During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field... During an interview at the Niels Bohr Institute David Bohm stated, “according to Einstein, particles should eventually emerge … as singularities, or very strong regions of stable pulses of (the gravitational) field” [1]. Starting from this premise, we show spacetime, indeed, manifests stable pulses (n-valued gravitons) that decay into the vacuum energy to generate all three boson masses (including Higgs), as well as heavy-quark mass;and all in precise agreement with the 2010 CODATA report on fundamental constants. Furthermore, our relativized quantum physics approach (RQP) answers to the mystery surrounding dark energy, dark matter, accelerated spacetime, and why ordinary matter dominates over antimatter. 展开更多
关键词 dark energy dark matter Einstein Higgs PARTICLE GEOMETRIC Particles Fundamental Quanta General Relativity BOSONS Quarks mass Hierarchy Problem Accelerated Spacetime Standard Model of PARTICLE PHYSICS Relativized Quantum PHYSICS RQP BOHM Consistency Condition
下载PDF
Dark Matter Particles
7
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1004-1020,共17页
Researchers have been able to infer the existence of Dark Matter (DM) only from the gravitational effect. DM seems to outweigh visible matter roughly six to one, making up about 27% of the universe. Here’s a sobering... Researchers have been able to infer the existence of Dark Matter (DM) only from the gravitational effect. DM seems to outweigh visible matter roughly six to one, making up about 27% of the universe. Here’s a sobering fact: The matter we know and that makes up all stars and galaxies only accounts for 5% of the content of universe! But what is DM? [1]. Many experiments to detect and study Dark Matter Particles (DMPs) directly are being actively undertaken, but none have yet succeeded. Indirect detection experiments search for the products of the annihilation or decay of DMPs in outer space [2]. In this paper, we discuss main ideas of the Hypersphere World-Universe Model (WUM) and introduce an additional new DMP “XION” (boson) with the rest energy 10.6 μeV that is an analog of Axion. On June 28, 2023, it was announced the existence of Cosmic Gravitational Background. In frames of WUM, we give an explanation of this discovery based on the analysis of “Gravitoplasma” composed of objects with Planck mass, which were created as the result of Weak Interaction between XIONs and other particles in the Medium. 展开更多
关键词 World-Universe Model Multicomponent dark matter Multiworld Planck mass XION Cosmic Gravitational Background Distribution of World’s energy Density
下载PDF
Mass of the Universe from Quarks: A Plausible Solution to the Cosmological Constant Problem
8
作者 Kevin Oramah 《Journal of Modern Physics》 2023年第12期1672-1692,共21页
A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is a... A framework to estimate the mass of the universe from quarks is presented, taking spacetime into account. This is a link currently missing in our understanding of physics/science. The focus on mass-energy balance is aimed at finding a solution to the Cosmological Constant (CC) problem by attempting to quantize space-time and linking the vacuum energy density at the beginning of the universe and the current energy density. The CC problem is the famous disagreement of approximately 120 orders of magnitude between the theoretical energy density at the Planck scale and the indirectly measured cosmological energy density. Same framework is also used to determine the mass of the proton and neutron from first principles. The only input is the up quark (u-quark) mass, or precisely, the 1st generation quarks. The method assumes that the u-quark is twice as massive as the down-quark (d-quark). The gap equation is the starting point, introduced in its simplest form. The main idea is to assume that all the particles and fields in the unit universe are divided into quarks and everything else. Everything else means all fields and forces present in the universe. It is assumed that everything else can be “quark-quantized”;that is, assume that they can be quantized into similar sizeable u-quarks and/or it’s associated interactions and relations. The result is surprisingly almost as measured and known values. The proton structure and mass composition are also analysed, showing that it likely has more than 3 quarks and more than 3 valence quarks. It is also possible to estimate the percentage of dark matter, dark energy, ordinary matter, and anti-matter. Finally, the cosmological constant problem or puzzle is resolved by connecting the vacuum energy density of Quantum Field Theory (5.1E+96 kg/m<sup>3</sup>) and the energy density of General Relativity (1.04E−26 kg/m<sup>3</sup>). Upon maturation, this framework can serve as a bridging platform between Quantum Field Theory and General Relativity. Other aspects of natures’ field theories can be successfully ported to the platform. It also increases the chances of solving some of the unanswered questions in physics. 展开更多
关键词 Cosmological Constant Proton mass-Structure Quark-Quantization dark matter dark energy Age of the Universe energy Density Spacetime Quantization
下载PDF
Characterizations That Help Explain Particle and Cosmic Data
9
作者 Thomas Joel Buckholtz 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1304-1357,共54页
This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for s... This paper suggests explanations for otherwise seemingly unexplained data about elementary particles and cosmology. The explanations have bases in coordinate-based modeling and in integer-based characterizations for some catalogs. One catalog features properties—including charge, mass, and angular momentum—of objects. Another catalog features all known and some possible elementary particles. Assumptions include that multipole-expansion mathematics has uses regarding long-range interactions, such as gravity, and that nature includes six isomers of all elementary particles other than long-range-interaction bosons. One isomer associates with ordinary matter. Five isomers are associated with dark matter. Multipole notions help explain large-scale aspects such as the rate of expansion of the universe. 展开更多
关键词 Elementary Particles dark matter Rate of Expansion of the Universe Galaxy Formation Neutrino masses Vacuum energy dark energy Quantum Gravity
下载PDF
On the Vacuum Hydrodynamics of Moving Bodies—The Theory of General Singularity
10
作者 Alessandro Rizzo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期875-905,共31页
The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-E... The Theory of General Singularity is presented, unifying quantum field theory, general relativity, and the standard model. This theory posits phonons as fundamental excitations in a quantum vacuum, modeled as a Bose-Einstein condensate. Through key equations, the role of phonons as intermediaries between matter, energy, and spacetime geometry is demonstrated. The theory expands Einsteins field equations to differentiate between visible and dark matter, and revises the standard model by incorporating phonons. It addresses dark matter, dark energy, gravity, and phase transitions, while making testable predictions. The theory proposes that singularities, the essence of particles and black holes, are quantum entities ubiquitous in nature, constituting the very essence of elementary particles, seen as micro black holes or quantum fractal structures of spacetime. As the theory is refined with increasing mathematical rigor, it builds upon the foundation of initial physical intuition, connecting the spacetime continuum of general relativity with the hydrodynamics of the quantum vacuum. Inspired by the insights of Tesla and Majorana, who believed that physical intuition justifies the infringement of mathematical rigor in the early stages of theory development, this work aims to advance the understanding of the fundamental laws of the universe and the perception of reality. 展开更多
关键词 Planck mass GRAVITY Light PHONONS Phononic Field Vacuum Hydrodynamics Bose-Einstein Condensate PHONONS Quantum Vacuum Unification GRAVITY dark matter dark energy Theory of General Singularity
下载PDF
The Electromagnetic Nature of Gravitation and Matter-Antimatter Antigravity. Surmise on Quantum Vacuum Gravitation and Cosmology
11
作者 Constantin Meis 《Journal of Modern Physics》 2022年第6期949-968,共20页
We show that the electromagnetic quantum vacuum derives directly from Maxwell’s theory and plays a primary role in quantum electrodynamics, particle physics, gravitation and cosmology. It corresponds to the electroma... We show that the electromagnetic quantum vacuum derives directly from Maxwell’s theory and plays a primary role in quantum electrodynamics, particle physics, gravitation and cosmology. It corresponds to the electromagnetic field ground state at zero frequency, a zero-energy cosmic field permeating all of space and it is composed of real states, called kenons (κενο = vacuum). Photons are local oscillations of kenons guided by a non-local vector potential wave function with quantized amplitude. They propagate at the speed imposed by the vacuum electric permittivity ε<sub>0</sub> and magnetic permeability μ<sub>0</sub>, which are intrinsic properties of the electromagnetic quantum vacuum. The electron-positron elementary charge derives naturally from the electromagnetic quantum vacuum and is related to the photon vector potential. We establish the masse-charge equivalence relation showing that the masses of all particles (leptons, mesons, baryons) and antiparticles are states of the elementary charges and their magnetic moments. The equivalence between Newton’s gravitational law and Coulomb’s electrostatic law results naturally. In addition, we show that the gravitational constant G is expressed explicitly through the electromagnetic quantum vacuum constants putting in evidence the electromagnetic nature of gravity. We draw that G is the same for matter and antimatter but gravitational forces should be repulsive between particles and antiparticles because their masses bear naturally opposite signs. The electromagnetic quantum vacuum appears to be the natural link between quantum electrodynamics, particle physics, gravitation and cosmology and constitutes a basic step towards a unified field theory. Dark Energy and Dark Matter might originate from the electromagnetic quantum vacuum fluctuations. The calculated electromagnetic vacuum energy density, related to the cosmological constant considered responsible for the cosmic acceleration, is in good agreement with the astrophysical observations. The cosmic acceleration may be due to both “quantum vacuum fluctuations” and “matter-antimatter gravitational repelling”. All the above results are established without stating any assumptions or postulates. Next, we advance two hypotheses with cosmological impact. The first is based on the possibility that gravitation is due to the electromagnetic quantum vacuum density of states fluctuations giving rise to a photon pressure at the characteristic collective oscillation frequencies of the charge densities composing the bodies (Electromagnetic Push Gravity). The second advances that energy, matter and antimatter in the universe emerge spontaneously from the quantum vacuum fluctuations as residues that remain stable in space and we present the main principles upon which a new cosmological model may be developed overcoming the well-known Big Bang issues. 展开更多
关键词 Photons Electromagnetic Waves Electromagnetic Quantum Vacuum dark Light Kenons GRAVITATION matter-Antimatter Antigravity Electromagnetic Push Gravity dark energy Cosmological Constant dark matter Elementary Charges mass-Charge Relation Cosmology Unified Field Theory
下载PDF
From a Dual Einstein-Kaluza Spacetime to ‘tHooft Renormalon and the Reality of Accelerated Cosmic Expansion 被引量:4
12
作者 Mohamed S. El Naschie 《Journal of Modern Physics》 2017年第8期1319-1329,共11页
We use a dual Einstein-Kaluza spacetime to calculate the exact energy density of dark energy and dark matter using a novel topological computation method. Starting from the said spacetime and ‘tHooft’s topological r... We use a dual Einstein-Kaluza spacetime to calculate the exact energy density of dark energy and dark matter using a novel topological computation method. Starting from the said spacetime and ‘tHooft’s topological renormalon as well as the corresponding symmetry group, we show how the zero set quantum particle and the empty set quantum wave interact with the vacuum and give rise to pure dark energy and pure dark matter all along with ordinary energy density of the cosmos. The consistency of the exact calculation and the accurate observations attests to the reality of ‘tHooft’s renormalon dark matter, pure dark energy and accelerated cosmic expansion. 展开更多
关键词 Accelerated COSMIC Expansion tHooft Renormalon Cantorian SPACETIME dark matter pure dark energy Topological E-Infinity Computation Zero Set Quantum Particle Empty Set Quantum Wave Hausdorff mass of Ordinary energy Topological mass of dark energy mixed mass of dark matter and pure dark energy A Dual Einstein-Kaluza SPACETIME
下载PDF
The anomalous shift of the weak boson mass and the quintessence electroweak axion
13
作者 Weikang Lin Tsutomu T Yanagida Norimi Yokozaki 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第3期70-74,共5页
One of the simplest ways to account for the observed W-boson mass shift is to introduce the SU(2)L triplet Higgs boson with zero hypercharge,whose vacuum expectation value is about 3 GeV.If the triplet is heavy enough... One of the simplest ways to account for the observed W-boson mass shift is to introduce the SU(2)L triplet Higgs boson with zero hypercharge,whose vacuum expectation value is about 3 GeV.If the triplet is heavy enough at O(1) TeV,it essentially contributes only to T parameter without any conflict with the observation.The presence of a complex triplet Higgs boson raises the SU(2)_(L) gauge coupling constant toα_(2)(M_(PL))≃1/44 at the Planck scale.Thanks to this larger gauge coupling constant,we show that the electroweak axion vacuum energy explains the observed cosmological constant provided that the axion field is located near the hill top of the potential at present. 展开更多
关键词 electroweak axion dark energy dark matter W-boson mass anomaly
原文传递
Variational Principle in an Expanding Universe 被引量:1
14
作者 Giovanni Guido Gianluigi Filippelli 《Journal of High Energy Physics, Gravitation and Cosmology》 2018年第1期179-222,共44页
In this paper we complete the relativistic cosmological theory because we extend the variational principle including variations of metric induced by expansion of the space. We will show that the mass not only curves S... In this paper we complete the relativistic cosmological theory because we extend the variational principle including variations of metric induced by expansion of the space. We will show that the mass not only curves Space and Time but also generates them: we’ll speak of the principle of mass-space equivalence. Then the increasing mass generates variations of metric as also the space increasing or expansion. So, the dark component of the mass generates additional gravity around galaxies as well as additional space, which generates a pressure (dark energy) accelerating the galaxies in their move away. All this could explain the cosmic coincidence (Ωdm/Ωde ≈ 1). To talk about the increasing mass is equivalent to speak of mass creation in universe, causing the variation of the tensor (T) mass-energy tensor of all component fields. We conjecture that its variation is caused by mass-energy flow comes out from a physical system (Θ) composed by set of uncoupled quantum oscillators (structure of no-field) in vacuum state. All this allows formulating a variational principle which generates the cosmological equation with the (Λ) parameter and a tensor T* with variable mass density, where T*(T, Θ). 展开更多
关键词 mass-Space Lattice-Field No-Field INTRINSIC Quantum Oscillator dark matter dark energy Vacuum
下载PDF
Higgs-Like Mechanism by Confinement of Quarks in a Chemical Non-Equilibrium Model 被引量:1
15
作者 Leif Matsson 《World Journal of Mechanics》 2016年第11期441-455,共16页
A chemical non-equilibrium equation for binding of massless quarks to antiquarks, combined with the spatial correlations occurring in the condensation process, yields a density dependent form of the double-well potent... A chemical non-equilibrium equation for binding of massless quarks to antiquarks, combined with the spatial correlations occurring in the condensation process, yields a density dependent form of the double-well potential in the electroweak theory. The Higgs boson acquires mass, valence quarks emerge and antiparticles become suppressed when the system relaxes and symmetry breaks down. The hitherto unknown dimensionless coupling parameter to the superconductor-like potential becomes a re-gulator of the quark-antiquark asymmetry. Only a small amount of quarks become “visible”—the valence quarks, which are 13% of the total sum of all quarks and antiquarks—suggesting that the quarks-antiquark pair components of the becoming quark-antiquark sea play the role of dark matter. When quark-masses are in-weighted, this number approaches the observed ratio between ordinary matter and the sum of ordinary and dark matter. The model also provides a chemical non-equilibrium explanation for the information loss in black holes, such as of baryon number. 展开更多
关键词 Confinement of Quarks Higgs Mechanism Emergence of mass dark matter Valence Quarks Antiquark Suppression Black Holes dark energy
下载PDF
On the Physics inside a Closed,Static,Rotating Einsteinian Hypersphere in Due Consideration of the Galaxy 被引量:1
16
作者 Ernst Karl Kunst 《Natural Science》 2014年第11期897-961,共65页
Einstein’s weak equivalence principle suggests that gravity and acceleration (centrifugal force) are indistinguishable from each other and, therefore, equivalent. We maintain that they are not only equivalent, but ev... Einstein’s weak equivalence principle suggests that gravity and acceleration (centrifugal force) are indistinguishable from each other and, therefore, equivalent. We maintain that they are not only equivalent, but even identical, or to rephrase the main statement of this work: A gravitational force does not exist. Rather, gravity is a fictitious force, or, more pointedly: Gravity is the centrifugal force which acts upon material bodies within the rotating S3-hypersphere of the Universe. These in turn warp the adjacent space-fabric, shaping it to the well-known field geometry of general relativity. 展开更多
关键词 Cosmology HYPERSPHERE Cosmological Redshift Redshift by Deflection Redshift“Anomalies”of the Supernova Data dark energy CMB≡Enthropic Planck Radiation Gravity≡Diverted Centrifugal Force Time mass anddark matter Foucault’s Law Raises Kicks of Gyros The Galaxy’s Former Position and Present Drift
下载PDF
Curvature mass inside hadrons: Linking gravity to QCD
17
作者 Fred Y. Ye 《Natural Science》 2013年第2期182-186,共5页
Following the basic ideas of general relativity and quantum field theory, combing two kinds of standard models, the curvature mass inside hadrons is discussed and developed, in which the standard model of particle phy... Following the basic ideas of general relativity and quantum field theory, combing two kinds of standard models, the curvature mass inside hadrons is discussed and developed, in which the standard model of particle physics and the standard model of cosmos are naturally unified under the mathematical framework of geometric field theory, where the phenomena of dark matter and dark energy could get naturally theoretical interpretation. 展开更多
关键词 CURVATURE mass Geometric FIELD Unified FIELD Theory GRAVITY dark matter dark energy QCD
下载PDF
The Electromagnetic Particle—A Backward Engineering Approach to Matter in SI Units
18
作者 Tobias Bartusch 《Journal of High Energy Physics, Gravitation and Cosmology》 2020年第4期774-801,共28页
This article describes the properties of the free elementary particles from an electromagnetic approach in SI units. The analysis is done from a backward engineering approach for the structural analysis. This also inc... This article describes the properties of the free elementary particles from an electromagnetic approach in SI units. The analysis is done from a backward engineering approach for the structural analysis. This also includes the origin of charge, which is modelled from a single photon and the pairing effect. Then the necessary implications for a stable particle including an explanation of the inner particle force and the quantization condition for the radius of the electron are handled. Furthermore, the properties of the myon, tauon, proton, neutron and black holes will be extrapolated and a possible reason for the mass oscillation of the Neutrino will be shown also. In addition, a possible explanation for the occurrence of matter free mass based on an EM-mass equation will be explained and will suggest an obviously resulting augmentation to the special relativity theory and finally the analytical approach of the theory is compared to the CODATA values and astronomic data for black holes. 展开更多
关键词 Electromagnetic dark energy dark matter OSCILLATOR Particle Structure PAIRING Electron mass Black Hole Magnetic Moment
下载PDF
物质和能量关系的本质
19
作者 杨新铁 《北京石油化工学院学报》 2009年第3期54-56,共3页
当代暗物质的研究从可压缩连续介质角度给出,在均匀各向同性的宇宙中很容易得到能动张量的基本形式。其状态方程可以是典型的可压缩气体形式,这样,就可以利用理想气体的特性来进一步解释引力场内能量和物质的关系。实际是把时空上的非... 当代暗物质的研究从可压缩连续介质角度给出,在均匀各向同性的宇宙中很容易得到能动张量的基本形式。其状态方程可以是典型的可压缩气体形式,这样,就可以利用理想气体的特性来进一步解释引力场内能量和物质的关系。实际是把时空上的非线性用一种描述方程上的更深刻的非线性机制来代替,这种新的类似于洛伦兹的变换具有更广泛的协变不变性。据此,对质量的定义可以理解为类似于在空气动力学试验中被物体边界所排挤的流体的质量。从本质上来说,变重了的并不是试验的飞行器壳体的结构重量,而是那个壳体体积所排挤的区域内部等价流体介质的质量。 展开更多
关键词 暗物质 麦克斯韦方程 相对论 质能关系
下载PDF
Neutrino mass hierarchy and lepton flavor mixing 被引量:3
20
作者 XING Zhi-zhong 《Chinese Science Bulletin》 SCIE EI CAS 2011年第24期2594-2599,共6页
In the standard model of particle physics there are three species of neutrinos whose masses were originally assumed to be zero. But the discovery of solar and atmospheric neutrino oscillations indicates that neutrinos... In the standard model of particle physics there are three species of neutrinos whose masses were originally assumed to be zero. But the discovery of solar and atmospheric neutrino oscillations indicates that neutrinos are massive and lepton flavors are mixed. In this brief review we first give an overview of our current knowledge about the neutrino mass spectrum and lepton flavor mixing angles, and then comment on the seesaw mechanisms which allow us to understand the origin of tiny neutrino masses. We pay particular attention to the nearly tri-bi-maximal neutrino mixing pattern and the Friedberg-Lee symmetry to derive it. A relatively promising possibility of detecting hot and warm neutrino dark matter in the Universe will also be discussed. 展开更多
关键词 中微子振荡 味混合 轻子 质量层 粒子物理学 标准模型 混合模式 混合角
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部