期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Regional Multi-Agent Cooperative Reinforcement Learning for City-Level Traffic Grid Signal Control
1
作者 Yisha Li Ya Zhang +1 位作者 Xinde Li Changyin Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1987-1998,共12页
This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight... This article studies the effective traffic signal control problem of multiple intersections in a city-level traffic system.A novel regional multi-agent cooperative reinforcement learning algorithm called RegionSTLight is proposed to improve the traffic efficiency.Firstly a regional multi-agent Q-learning framework is proposed,which can equivalently decompose the global Q value of the traffic system into the local values of several regions Based on the framework and the idea of human-machine cooperation,a dynamic zoning method is designed to divide the traffic network into several strong-coupled regions according to realtime traffic flow densities.In order to achieve better cooperation inside each region,a lightweight spatio-temporal fusion feature extraction network is designed.The experiments in synthetic real-world and city-level scenarios show that the proposed RegionS TLight converges more quickly,is more stable,and obtains better asymptotic performance compared to state-of-theart models. 展开更多
关键词 Human-machine cooperation mixed domain attention mechanism multi-agent reinforcement learning spatio-temporal feature traffic signal control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部