As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simul...As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.展开更多
Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f...Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.展开更多
The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem a...The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.展开更多
A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain th...A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).展开更多
The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one opt...The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.展开更多
While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using po...While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).展开更多
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integ...In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.展开更多
This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ord...This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.展开更多
A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and...A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and the rise angle(α)are selected as the design parameters,and the mixing efficiency,thrust and total pressure loss are the optimization objectives.The CFX commercial solver coupled with the SST turbulence model is employed to simulate the flow field of lobed mixer.A tetrahedral unstructured grid with 5.6 million cells can achieve the similar global results.Based on the response surface approximation model of the lobed mixer,it is necessary to avoid increasing or decreasingαandηat the same time.Instead,theαshould be reduced while theηis appropriately increased,which is conducive to achieving the goal of increasing thrust and reducing losses at the expense of a small decrease in the mixing efficiency.Compared with the normalized method,the non-normalized method with better global optimization accuracy is more suitable for solving the multi-objective optimization problem of the lobed mixer,and its optimal solution(α=8.54°,η=1.165)is the optimal solution of the lobed mixer optimization problem studied in this paper.Compared with the reference lobed mixer,theα,β(the fall angle)and H(lobe height)of the optimal solution are reduced by 0.14°,1.34°and 3.97 mm,respectively,and theηis increased by 0.074;its mixing efficiency is decreased by 4.46%,but the thrust is increased by 2.29%and the total pressure loss is decreased by 0.64%.Downstream of the optimized lobed mixer,the radial scale and peak vorticity of the streamwise voritices decrease with the decreasing lobe height,thereby reducing the mixing efficiency.For the optimized lobed mixer,its low mixing efficiency is the main factor for the decrease of the total pressure loss,but the improvement of the geometric curvature is also conducive to reducing its profile loss.Within the scope of this study,the lobed mixer has an optimal mixing efficiency(ε=74.14%)that maximizes its thrust without excessively increasing the mixing loss.展开更多
The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancin...The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancing efficiency is maximized. If the organization assembles more than one model in the same line, then the objective is to maximize the average balancing efficiency of the models of the mixed model assembly line balancing problem. Maximization of average balancing efficiency of the models along with minimization of makespan of sequencing models forms a multi-objective function. This is a realistic objective function which combines the balancing efficiency and makespan. This assembly line balancing problem with multi-objective comes under combinatorial category. Hence, development of meta-heuristic is inevitable. In this paper, an attempt has been made to develop three genetic algorithms for the mixed model assembly line balancing problem such that the average balancing efficiency of the model is maximized and the makespan of sequencing the models is minimized. Finally, these three algorithms and another algorithm in literature modified to solve the mixed-model assembly line balancing problem are compared in terms of the stated multi-objective function using a randomly generated set of problems through a complete factorial experiment.展开更多
After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for appl...After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.展开更多
In view of the existence of uncertainties such as system model and disturbance signal in the electric power steering (EPS) system, and the demand for system dynamic performance, the mixed H2/H∞, controller based on...In view of the existence of uncertainties such as system model and disturbance signal in the electric power steering (EPS) system, and the demand for system dynamic performance, the mixed H2/H∞, controller based on genetic algorithm is proposed. In order to obtain satisfactory steering feel, robust performance and steering stability, models of EPS system and a two-degree- of-freedom car are set up, then the state space model and the augmented matrixes are built. The H∞, method is introduced to minimize the effect of disturbances on the outputs, and the H2 method is applied to optimizing the system performance based on genetic algorithm. The simulation results show that the modified mixed H2/H∞ controller, which synthesizes the advantage of H2 control and Ha, control, has better robust performance and robust stability. The designed controller can attenuate the noises and disturbances caused by road random motivation, torque sensor measurement and model parameter uncertainty, enabling the driver to obtain satisfactory road feel.展开更多
针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式...针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。展开更多
基金supported by National Natural Science Foundation of China (Grant No.50875101)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA04Z186)
文摘As two independent problems,scheduling for parts fabrication line and sequencing for mixed-model assembly line have been addressed respectively by many researchers.However,these two problems should be considered simultaneously to improve the efficiency of the whole fabrication/assembly systems.By far,little research effort is devoted to sequencing problems for mixed-model fabrication/assembly systems.This paper is concerned about the sequencing problems in pull production systems which are composed of one mixed-model assembly line with limited intermediate buffers and two flexible parts fabrication flow lines with identical parallel machines and limited intermediate buffers.Two objectives are considered simultaneously:minimizing the total variation in parts consumption in the assembly line and minimizing the total makespan cost in the fabrication/assembly system.The integrated optimization framework,mathematical models and the method to construct the complete schedules for the fabrication lines according to the production sequences for the first stage in fabrication lines are presented.Since the above problems are non-deterministic polynomial-hard(NP-hard),a modified multi-objective genetic algorithm is proposed for solving the models,in which a method to generate the production sequences for the fabrication lines from the production sequences for the assembly line and a method to generate the initial population are put forward,new selection,crossover and mutation operators are designed,and Pareto ranking method and sharing function method are employed to evaluate the individuals' fitness.The feasibility and efficiency of the multi-objective genetic algorithm is shown by computational comparison with a multi-objective simulated annealing algorithm.The sequencing problems for mixed-model production systems can be solved effectively by the proposed modified multi-objective genetic algorithm.
基金supported by the National Natural Science Fundation of China (60374063)
文摘Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.
文摘The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.
文摘A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).
基金Supported by the Deutsche Forschungsgemeinschaft (DFG No. RO294/9).
文摘The multi-stream heat exchanger network synthesis (HENS) problem can be formulated as a mixed integer nonlinear programming model according to Yee et al. Its nonconvexity nature leads to existence of more than one optimum and computational difficulty for traditional algorithms to find the global optimum. Compared with deterministic algorithms, evolutionary computation provides a promising approach to tackle this problem. In this paper, a mathematical model of multi-stream heat exchangers network synthesis problem is setup. Different from the assumption of isothermal mixing of stream splits and thus linearity constraints of Yee et al., non-isothermal mixing is supported. As a consequence, nonlinear constraints are resulted and nonconvexity of the objective function is added. To solve the mathematical model, an algorithm named GA/SA (parallel genetic/simulated annealing algorithm) is detailed for application to the multi-stream heat exchanger network synthesis problem. The performance of the proposed approach is demonstrated with three examples and the obtained solutions indicate the presented approach is effective for multi-stream HENS.
文摘While various kinds of fibers are used to improve the hot mix asphalt(HMA) performance, a few works have been undertaken on the hybrid fiber-reinforced HMA. Therefore, the fatigue life of modified HMA samples using polypropylene and polyester fibers was evaluated and two models namely regression and artificial neural network(ANN) were used to predict the fatigue life based on the fibers parameters. As ANN contains many parameters such as the number of hidden layers which directly influence the prediction accuracy, genetic algorithm(GA) was used to solve optimization problem for ANN. Moreover, the trial and error method was used to optimize the GA parameters such as the population size. The comparison of the results obtained from regression and optimized ANN with GA shows that the two-hidden-layer ANN with two and five neurons in the first and second hidden layers, respectively, can predict the fatigue life of fiber-reinforced HMA with high accuracy(correlation coefficient of 0.96).
基金Supported by the National 973 Program of China (No. G2000263).
文摘In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.
文摘This paper treats multi-objective problem for manufacturing process design. A purpose of the process design is to decide combinations of work elements assigned to different work centers. Multiple work elements are ordinarily assigned to each center. Here, infeasible solutions are easily generated by precedence relationship of work elements in process design. The number of infeasible solutions generated is ordinarily larger than that of feasible solutions generated in the process. Therefore, feasible and infeasible solutions are located in any neighborhood in solution space. It is difficult to seek high quality Pareto solutions in this problem by using conventional multi-objective evolutional algorithms. We consider that the problem includes difficulty to seek high quality solutions by the following characteristics: (1) Since infeasible solutions are resemble to good feasible solutions, many infeasible solutions which have good values of objective functions are easily sought in the search process, (2) Infeasible solutions are useful to select new variable conditions generating good feasible solutions in search process. In this study, a multi-objective genetic algorithm including local search is proposed using these characteristics. Maximum value of average operation times and maximum value of dispersion of operation time in all work centers are used as objective functions to promote productivity. The optimal weighted coefficient is introduced to control the ratio of feasible solutions to all solutions selected in crossover and selection process in the algorithm. This paper shows the effectiveness of the proposed algorithm on simple model.
基金funded by the National Science and Technology Major Project(Grant No.J2019-II-0007-0027)。
文摘A Sequential Approximate Optimization framework(SAO)for the multi-objective optimization of lobed mixer is established by using the BP neural network and Genetic Algorithm:the ratio of lobe wavelength to height(η)and the rise angle(α)are selected as the design parameters,and the mixing efficiency,thrust and total pressure loss are the optimization objectives.The CFX commercial solver coupled with the SST turbulence model is employed to simulate the flow field of lobed mixer.A tetrahedral unstructured grid with 5.6 million cells can achieve the similar global results.Based on the response surface approximation model of the lobed mixer,it is necessary to avoid increasing or decreasingαandηat the same time.Instead,theαshould be reduced while theηis appropriately increased,which is conducive to achieving the goal of increasing thrust and reducing losses at the expense of a small decrease in the mixing efficiency.Compared with the normalized method,the non-normalized method with better global optimization accuracy is more suitable for solving the multi-objective optimization problem of the lobed mixer,and its optimal solution(α=8.54°,η=1.165)is the optimal solution of the lobed mixer optimization problem studied in this paper.Compared with the reference lobed mixer,theα,β(the fall angle)and H(lobe height)of the optimal solution are reduced by 0.14°,1.34°and 3.97 mm,respectively,and theηis increased by 0.074;its mixing efficiency is decreased by 4.46%,but the thrust is increased by 2.29%and the total pressure loss is decreased by 0.64%.Downstream of the optimized lobed mixer,the radial scale and peak vorticity of the streamwise voritices decrease with the decreasing lobe height,thereby reducing the mixing efficiency.For the optimized lobed mixer,its low mixing efficiency is the main factor for the decrease of the total pressure loss,but the improvement of the geometric curvature is also conducive to reducing its profile loss.Within the scope of this study,the lobed mixer has an optimal mixing efficiency(ε=74.14%)that maximizes its thrust without excessively increasing the mixing loss.
文摘The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancing efficiency is maximized. If the organization assembles more than one model in the same line, then the objective is to maximize the average balancing efficiency of the models of the mixed model assembly line balancing problem. Maximization of average balancing efficiency of the models along with minimization of makespan of sequencing models forms a multi-objective function. This is a realistic objective function which combines the balancing efficiency and makespan. This assembly line balancing problem with multi-objective comes under combinatorial category. Hence, development of meta-heuristic is inevitable. In this paper, an attempt has been made to develop three genetic algorithms for the mixed model assembly line balancing problem such that the average balancing efficiency of the model is maximized and the makespan of sequencing the models is minimized. Finally, these three algorithms and another algorithm in literature modified to solve the mixed-model assembly line balancing problem are compared in terms of the stated multi-objective function using a randomly generated set of problems through a complete factorial experiment.
基金China National Key-Important Basic Research Plan (Grant No. 95-Y-38) and the Special Funds for Major State Basic Research Project (Grant No. 20000779900).
文摘After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.
基金supported by the National Natural Science Foundation of China (Grant Nos.51005115 and 51005248)the Science Fund of State Key Laboratory of Automotive Safety and Energy (Grant No.KF11201)
文摘In view of the existence of uncertainties such as system model and disturbance signal in the electric power steering (EPS) system, and the demand for system dynamic performance, the mixed H2/H∞, controller based on genetic algorithm is proposed. In order to obtain satisfactory steering feel, robust performance and steering stability, models of EPS system and a two-degree- of-freedom car are set up, then the state space model and the augmented matrixes are built. The H∞, method is introduced to minimize the effect of disturbances on the outputs, and the H2 method is applied to optimizing the system performance based on genetic algorithm. The simulation results show that the modified mixed H2/H∞ controller, which synthesizes the advantage of H2 control and Ha, control, has better robust performance and robust stability. The designed controller can attenuate the noises and disturbances caused by road random motivation, torque sensor measurement and model parameter uncertainty, enabling the driver to obtain satisfactory road feel.
文摘针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。