The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem a...The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.展开更多
Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This p...Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II). Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU time than CNSGA II, its other performances are dominated.展开更多
The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancin...The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancing efficiency is maximized. If the organization assembles more than one model in the same line, then the objective is to maximize the average balancing efficiency of the models of the mixed model assembly line balancing problem. Maximization of average balancing efficiency of the models along with minimization of makespan of sequencing models forms a multi-objective function. This is a realistic objective function which combines the balancing efficiency and makespan. This assembly line balancing problem with multi-objective comes under combinatorial category. Hence, development of meta-heuristic is inevitable. In this paper, an attempt has been made to develop three genetic algorithms for the mixed model assembly line balancing problem such that the average balancing efficiency of the model is maximized and the makespan of sequencing the models is minimized. Finally, these three algorithms and another algorithm in literature modified to solve the mixed-model assembly line balancing problem are compared in terms of the stated multi-objective function using a randomly generated set of problems through a complete factorial experiment.展开更多
In-house part supply affects the efficiency of mixed-model assembly lines considerably. Hence, we propose a reliable Just-In-Time part supply strategy with the use of decentralized supermarkets. For a given production...In-house part supply affects the efficiency of mixed-model assembly lines considerably. Hence, we propose a reliable Just-In-Time part supply strategy with the use of decentralized supermarkets. For a given production sequence and line layout, the proposed strategy schedules tow train routing and delivery problems jointly to minimize the number of employed town trains and the traveling time, while ensuring that stations never run out of parts. To solve this problem, a mathematical formulation is proposed for each sub-problem aiming at minimizing supply cost. Then, a dynamic programming algorithm for routing and a greedy algorithm for delivery are developed, both of which are of polynomial runtime. Finally, a computational study is implemented to validate the effectiveness of the strategy, and to investigate the effects of the delivery capacity of tow trains and storage capacity of stations on supply cost.展开更多
The typemixed-model assembly line balancing problem with uncertain task times is a critical problem. This paper addresses this issue of practical significance to production efficiency. Herein, a robust optimization mo...The typemixed-model assembly line balancing problem with uncertain task times is a critical problem. This paper addresses this issue of practical significance to production efficiency. Herein, a robust optimization model for this problem is formulated to hedge against uncertainty. Moreover, the counterpart of the robust optimization model is developed by duality. A hybrid genetic algorithm (HGA) is proposed to solve this problem. In this algorithm, a heuristic method is utilized to seed the initial population. In addition, an adaptive local search procedure and a discrete Levy flight are hybridized with the genetic algorithm (GA) to enhance the performance of the algorithm. The effectiveness of the HGA is tested on a set of benchmark instances. Furthermore, the effect of uncertainty parameters on production efficiency is also investigated.展开更多
This paper studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is ...This paper studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is established by examining the relationship among the set-up time, the amount of work in process (WIP), the capacity indicated by a Kanban, and the takt-time ratio. A novel method for optimizing performance on the premise of no stockouts is proposed. Empirical results show that the amount of WIP is reduced remarkably after optimization.展开更多
To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain hig...To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain high-quality sequences, an advanced scatter search (ASS) algorithm is proposed. A heuristic approach, i.e. launching intervals between products algorithm (LIBPA), is incorporated into the ASS algorithm to solve the launching interval problem for each sequence. Numerical experiments with different scales are conducted to compare the performance of ASS with genetic algorithm (GA). In addition, we compare the cost of variable launching intervals approach with fixed launching intervals approach. The results indicate that the ASS is efficient and effective, and considering variable launching intervals in mixed-model assembly lines (MMALs) sequencing problem can improve the performance of the line.展开更多
Material handling has become one of the major challenges in modern production management.Consequently,this paper intends to investigate the part delivery of mixedmodel assembly lines with decentralized supermarkets an...Material handling has become one of the major challenges in modern production management.Consequently,this paper intends to investigate the part delivery of mixedmodel assembly lines with decentralized supermarkets and tow trains.Besides,uncertain exception disturbances,including tow train failures and adjustments of the production sequence,are also considered.To solve this problem,a heuristic-based dynamic delivery strategy is proposed,which dynamically schedules the route,departure time,quantities and types of loaded parts for each tour.To evaluate the performance of this strategy,it is used to solve an instance in comparison with the periodic delivery strategy,experimental results are reported and their performances are compared under different metrics.Moreover,a multi-scenario analysis is employed to determinate the long-term decisions,including the number of tow trains and the route layout.Finally,the critical storage is suggested to be set for each station to avoid part starvation resulting from disturbances,and its effect on the delivery performance is investigated.展开更多
Mixed-Model assembly lines are often used in manufacturing based on just-in-time techniques. The effective utilization of these lines requires a schedule for assembling the different models be determined. The objectiv...Mixed-Model assembly lines are often used in manufacturing based on just-in-time techniques. The effective utilization of these lines requires a schedule for assembling the different models be determined. The objective is to minimize the total deviation of actual production rates from the desired production rates. Mathematical method with the optimization algorithm is proposed here to solve this problem. To prove the efficiency of the proposed algorithm, a number of test problems are solved. The results show that the proposed algorithm is an efficient and effective algorithm which gives better results with the large problem sizes. This paper presents a practical procedure to minimize total product variation rates, and easy to use by practitioner.展开更多
文摘The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.
文摘Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II). Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU time than CNSGA II, its other performances are dominated.
文摘The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancing efficiency is maximized. If the organization assembles more than one model in the same line, then the objective is to maximize the average balancing efficiency of the models of the mixed model assembly line balancing problem. Maximization of average balancing efficiency of the models along with minimization of makespan of sequencing models forms a multi-objective function. This is a realistic objective function which combines the balancing efficiency and makespan. This assembly line balancing problem with multi-objective comes under combinatorial category. Hence, development of meta-heuristic is inevitable. In this paper, an attempt has been made to develop three genetic algorithms for the mixed model assembly line balancing problem such that the average balancing efficiency of the model is maximized and the makespan of sequencing the models is minimized. Finally, these three algorithms and another algorithm in literature modified to solve the mixed-model assembly line balancing problem are compared in terms of the stated multi-objective function using a randomly generated set of problems through a complete factorial experiment.
基金supported in part by the National Key Technology Research and Development Program(No.2012BAF15G01)
文摘In-house part supply affects the efficiency of mixed-model assembly lines considerably. Hence, we propose a reliable Just-In-Time part supply strategy with the use of decentralized supermarkets. For a given production sequence and line layout, the proposed strategy schedules tow train routing and delivery problems jointly to minimize the number of employed town trains and the traveling time, while ensuring that stations never run out of parts. To solve this problem, a mathematical formulation is proposed for each sub-problem aiming at minimizing supply cost. Then, a dynamic programming algorithm for routing and a greedy algorithm for delivery are developed, both of which are of polynomial runtime. Finally, a computational study is implemented to validate the effectiveness of the strategy, and to investigate the effects of the delivery capacity of tow trains and storage capacity of stations on supply cost.
文摘The typemixed-model assembly line balancing problem with uncertain task times is a critical problem. This paper addresses this issue of practical significance to production efficiency. Herein, a robust optimization model for this problem is formulated to hedge against uncertainty. Moreover, the counterpart of the robust optimization model is developed by duality. A hybrid genetic algorithm (HGA) is proposed to solve this problem. In this algorithm, a heuristic method is utilized to seed the initial population. In addition, an adaptive local search procedure and a discrete Levy flight are hybridized with the genetic algorithm (GA) to enhance the performance of the algorithm. The effectiveness of the HGA is tested on a set of benchmark instances. Furthermore, the effect of uncertainty parameters on production efficiency is also investigated.
基金supported by the Guangdong Natural Science Foundation under Grant No.B6080170
文摘This paper studies the parameter design and the performance optimization of a Kanban system without stockouts in a multi-stage, mixed-model assembly line. The model of a Kanban system based on production processes is established by examining the relationship among the set-up time, the amount of work in process (WIP), the capacity indicated by a Kanban, and the takt-time ratio. A novel method for optimizing performance on the premise of no stockouts is proposed. Empirical results show that the amount of WIP is reduced remarkably after optimization.
基金the National Natural Science Foundation of China(No.71071115)the National High Technology Research and Development Program (863) of China(No.2009AA043000)
文摘To solve the sequencing problem in mixed-model flexible assembly lines (MMFALs) with variable launching intervals, a mathematical model aiming to minimize the cost of utility and idle times is developed. To obtain high-quality sequences, an advanced scatter search (ASS) algorithm is proposed. A heuristic approach, i.e. launching intervals between products algorithm (LIBPA), is incorporated into the ASS algorithm to solve the launching interval problem for each sequence. Numerical experiments with different scales are conducted to compare the performance of ASS with genetic algorithm (GA). In addition, we compare the cost of variable launching intervals approach with fixed launching intervals approach. The results indicate that the ASS is efficient and effective, and considering variable launching intervals in mixed-model assembly lines (MMALs) sequencing problem can improve the performance of the line.
基金supported in part by National Science and Technology Support Program Under Grant 2012BAF15G01.
文摘Material handling has become one of the major challenges in modern production management.Consequently,this paper intends to investigate the part delivery of mixedmodel assembly lines with decentralized supermarkets and tow trains.Besides,uncertain exception disturbances,including tow train failures and adjustments of the production sequence,are also considered.To solve this problem,a heuristic-based dynamic delivery strategy is proposed,which dynamically schedules the route,departure time,quantities and types of loaded parts for each tour.To evaluate the performance of this strategy,it is used to solve an instance in comparison with the periodic delivery strategy,experimental results are reported and their performances are compared under different metrics.Moreover,a multi-scenario analysis is employed to determinate the long-term decisions,including the number of tow trains and the route layout.Finally,the critical storage is suggested to be set for each station to avoid part starvation resulting from disturbances,and its effect on the delivery performance is investigated.
文摘Mixed-Model assembly lines are often used in manufacturing based on just-in-time techniques. The effective utilization of these lines requires a schedule for assembling the different models be determined. The objective is to minimize the total deviation of actual production rates from the desired production rates. Mathematical method with the optimization algorithm is proposed here to solve this problem. To prove the efficiency of the proposed algorithm, a number of test problems are solved. The results show that the proposed algorithm is an efficient and effective algorithm which gives better results with the large problem sizes. This paper presents a practical procedure to minimize total product variation rates, and easy to use by practitioner.