This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of t...The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.展开更多
In order to practice the concept of‘lucid waters and lush mountains are invaluable assets’and promote the green development of agriculture,it is necessary to improve the efficiency of agricultural energy utilization...In order to practice the concept of‘lucid waters and lush mountains are invaluable assets’and promote the green development of agriculture,it is necessary to improve the efficiency of agricultural energy utilization.Based on the panel data of 28 provinces from 1995 to 2018,this paper calculated China’s agricultural energy input from two categories of direct energy and indirect energy,and used EBM(Epsilon-based Measure)mixed distance function model to measure the energy efficiency of agriculture in China.The nuclear density function and spatial autocorrelation were used to analyze the dynamic evolution of agricultural energy efficiency,and the dynamic panel model was used to analyze the influencing factors of agricultural energy efficiency.The results showed that:①From 1995 to 2018,the total agricultural energy input had increased year by year in China,with an average annual growth rate of 2%.Energy input structure changed from indirect energy-based to direct energy-based.Agricultural energy efficiency showed an evolutionary trend of‘rising-stagnating-rising rapidly’in China.The agricultural energy efficiency was generally low in China,and there was a large space for improvement in agricultural energy efficiency.②From 1995 to 2018,the average annual growth rate of agricultural energy efficiency in the eastern,central and western regions was 2.7%,1.9%and 1.4%respectively.In 2018,the agricultural energy efficiency in the eastern,central and western regions was 0.81,0.71 and 0.59 respectively.The gap between regions was expanding rapidly,and the agricultural energy efficiency in the central and western regions needed to be improved.③From 1995 to 2018,the agricultural energy efficiency of each province was polarized and the absolute gap was widened.There was obvious improvement in agricultural energy efficiency in Guangdong,Shandong,Jiangxi,Jiangsu,Liaoning and Tianjin,while the agricultural energy efficiency of Xinjiang,Guizhou,Zhejiang,Shanghai,and Inner Mongolia deteriorated.④From 1995 to 2018,there was no global spatial correlation of China’s agricultural energy efficiency.However,local‘high-high’concentration gradually appeared in the eastern region since 2010.⑤The first lag of energy efficiency had a significant positive impact on agricultural energy efficiency,and agricultural energy efficiency improvement had a time lag.The level of human capital,per capita net income of farmers and the level of urbanizaton had a significant positive impact on agricultural energy efficiency.The disaster rate,the level of development of secondary and tertiary industries,and the level of opening up had a significant negative impact on agricultural energy efficiency.In the implementation of the strategy of rural revitalization,we should focus on the central and western regions,take the cultivation of professional farmers as the key,focus on improving agricultural production conditions,enhance the level of cooperation between regions,exert the leading role of the secondary and tertiary industries,and enhance the ability of agricultural disaster prevention and mitigation.展开更多
The oil-water imbibition equation in the nano-scale pores considering the dynamic contact angle effect, nanoconfinement effect, inertia effect, and inlet end effect was established, and the relation between the fricti...The oil-water imbibition equation in the nano-scale pores considering the dynamic contact angle effect, nanoconfinement effect, inertia effect, and inlet end effect was established, and the relation between the friction coefficient of solid-oil-water three-phase contact line and the fluid viscosity in the interface zone was derived. In combination with the capillary bundle model and the lognormal distribution theory, the imbibition model of tight core was obtained and key parameters affecting imbibition dynamics were analyzed. The study shows that in the process of nanopore imbibition, the dynamic contact angle effect has the most significant impact on the imbibition, followed by nanoconfinement effect(multilayer sticking effect and slippage effect), and the inertia effect and inlet end effect have the least impact;in the initial stage of imbibition, the effect of inertial force decreases, and the effect of contact line friction increases, so the dynamic contact angle gradually increases from the initial equilibrium contact angle to the maximum and then remains basically stable;in the later stage of imbibition,the effect of contact line friction decreases, and the contact angle gradually decreases from the maximum dynamic contact angle and approaches the initial equilibrium contact angle;as the pore radius decreases, the dynamic contact angle effect increases in the initial stage of imbibition and decreases in the later stage of imbibition;as the oil-water interfacial tension increases, the imbibition power increases, and the dynamic contact angle effect increases;there is a critical value for the influence of interfacial tension on the imbibition dynamics. In improving oil recovery by imbibition in tight oil reservoir, interfacial tension too low cannot achieve good imbibition effect, and the best interfacial tension needs to be obtained through optimization.展开更多
In this study,we developed an evaluation index system for green total-factor water-use efficiency(GTFWUE)which reflected both economic and green efficiencies of water resource utilization.Then we measured the GTFWUE o...In this study,we developed an evaluation index system for green total-factor water-use efficiency(GTFWUE)which reflected both economic and green efficiencies of water resource utilization.Then we measured the GTFWUE of 30 provinces/municipalities/autonomous regions(hereafter provinces)in China(not including Tibet,Hong Kong,Macao,Taiwan as no data)from 2000 to 2018 using a minimum distance to the strong frontier model that contained an undesirable output.We further analyzed the regional differences and spatial correlations of GTFWUE using these values based on Global and Local Moran’s I statistics,and empirically determined the factors affecting GTFWUE using a spatial econometric model.The evaluation results revealed that the GTFWUE differed substantially between the regions.The provinces with high and low GTFWUE values were located in the coastal and inland areas of China,respectively.The eastern region had a significantly higher GTFWUE than the central and western regions.The GTFWUEs for all three regions(eastern,central,and western regions)decreased slowly from 2000 to 2011(except 2005),remained stable from 2012 to 2016,and rapidly increased in 2017 before decreasing again in 2018.We found significant spatial correlations between the provincial GTFWUEs.The GTFWUE for most provinces belonged to the high-high or low-low cluster region,revealing a significant spatial clustering effect of provincial GTFWUEs.We also found that China’s GTFWUE was highly promoted by economic growth,population size,opening-up level,and urbanization level,and was evidently hindered by water endowment,technological progress,and government influence.However,the water-use structure had little impact on GTFWUE.This study fully demonstrated that the water use mode would be improved,and water resources needed to be used more efficiently and green in China.Moreover,based on the findings of this study,several policy recommendations were proposed from the aspects of cross-regional cooperation,economy,society,and institution.展开更多
This study investigates the degree of capital mobility in a panel of 16 Latin American and 4 Caribbean countries during 1960 to 2017 against the backdrop of the Feldstein-Horioka hypothesis by applying recent panel da...This study investigates the degree of capital mobility in a panel of 16 Latin American and 4 Caribbean countries during 1960 to 2017 against the backdrop of the Feldstein-Horioka hypothesis by applying recent panel data techniques.This is the first study on capital mobility in Latin American and Caribbean countries to employ the recently developed panel data procedure of the dynamic common correlated effects modeling technique of Chudik and Pesaran(J Econ 188:393–420,2015)and the error-correction testing of Gengenbach,Urbain,and Westerlund(Panel error correction testing with global stochastic trends,2008,J Appl Econ 31:982–1004,2016).These approaches address the serious panel data econometric issues of crosssection dependence,slope heterogeneity,nonstationarity,and endogeneity in a multifactor error-structure framework.The empirical findings of this study reveal a low average(mean)savings–retention coefficient for the panel as a whole and for most individual countries,as well as indicating a cointegration relationship between saving and investment ratios.The results indicate that there is a relatively high degree of capital mobility in the Latin American and Caribbean countries in the short run,while the long-run solvency condition is maintained,which is due to reduced frictions in goods and services markets causing increase competition.Increased capital mobility in these countries can promote economic growth and hasten the process of globalization by creating a conducive economic environment for FDI in these countries.展开更多
Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In ...Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In order to analyze the driving factors of corporate social responsibility from both internal and external aspects,the dynamic model of corporate social responsibility was constructed,and the driving strategies of corporate social responsibility were also suggested.The driving factors of corporate social responsibility include not only the external constraints of policies,regulations and stakeholders,but also the internal requirements of the sustainable development of enterprises.Only when the external driving force is transformed into the spontaneous and conscious responsibility behavior of the enterprise,can the enterprise achieve its due effect.Moreover,in order to better fulfill the social responsibility,enterprise should build a management system of social responsibility,enhance the awareness of social responsibility,and promote the effective implementation of social responsibility projects.The relevant department should strengthen the all-round supervision of corporate social responsibility,and further improve the policies,laws and regulations related to social responsibility.Enterprises should strengthen communication with stakeholders,actively disclose social responsibility information,and constantly improve social responsibility behavior.By implementing social responsibility,enterprise can improve its business environment,enhance corporate brand image and core competitiveness,and promote the sustainable development of economy and society.展开更多
Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking t...Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclusions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments.展开更多
Spatiotemporal dynamics of the damped dc-driven Frenkel-Kontorova lattice is studied. Multistable topologies are shown. Intermittency of the dynamical contraction factor is found, and this behavior is a consequence of...Spatiotemporal dynamics of the damped dc-driven Frenkel-Kontorova lattice is studied. Multistable topologies are shown. Intermittency of the dynamical contraction factor is found, and this behavior is a consequence of the collisions of kinks and antikinks. Fast kinks and antikinks are unstable. The transition from the localized kink to the whirling mode is found to be a temporal bifurcation cascade of generations of kink-antikink pairs and the collision-induced avalanche dynamics. Noise-induced topology transition is observed and discussed.展开更多
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte...The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.展开更多
As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has...As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.展开更多
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low...The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.展开更多
Coal production capacity regulation is a complex system involving economic growth,structural optimization,high-efficiency mining,and environmental protection.Based on its driving factors,this paper forms four regulati...Coal production capacity regulation is a complex system involving economic growth,structural optimization,high-efficiency mining,and environmental protection.Based on its driving factors,this paper forms four regulation modes representing different control orientations,establishes a system dynamics model,and predicts the regulation effects of single-factor and combined control mode.The result shows:(1) Except for the mechanization degree and recovery rate,the other nine individual production capacity control policies are all conducive to reducing coal production capacity and restraining the excessive growth of coal production capacity.(2) The effect of combined regulation mode on slowing down the growth of coal demand,regulating the excessive growth of coal production capacity and new capacity investment are obviously better than that of single policy.(3) The combined control modes have obvious differences in the suppression effect on coal production capacity:transformational development mode > technology-driven mode > structural optimization mode > efficiency improvement mode.Therefore,in the process of achieving optimal regulation of coal production capacity,attention should be paid to the preferential use of transformational development and technology-driven mode.At the same time,the comprehensive use of regulation and control methods should also be considered to improve the regulation effect and the regulation efficiency of coal production capacity.展开更多
Most rainfall-induced landslide forecasting models focus on the relation between landslides and rainfall,which is one of the dynamic factors,and seldom consider the stacitc factors,such as geological and geograpical f...Most rainfall-induced landslide forecasting models focus on the relation between landslides and rainfall,which is one of the dynamic factors,and seldom consider the stacitc factors,such as geological and geograpical factors.Landslide susceptibility,however,is determinded by both static and dynamic factors.This article proposes a static and dynamic factors-coupled forecasting model(SDFCFM) of regional rainfall-induced landslides,which quantitatively considers both the static and dynamic factors that affect landslides.The generalized additive model(GAM) is applied to coupling both factors to get the landslide susceptibility.In the case study,SDFCFM is applied to forecast the landslide occurrences in Shenzhen during a rainfall process in 2008.Compared with the rainfall logistic regression model,the resulting landslide susceptibility map illustrates that SDFCFM can reduce the forecast redundancy and improve the hit ratio.It is both applicable and practical.The application of SDFCFM in landslide warning and prevention system will improve its efficiency and also cut down the cost of human and matreial resources.展开更多
To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wid...To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.展开更多
This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carb...This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carbon emissions of the Yangtze River Delta urban agglomeration, using a spatial Durbin panel model. The results show that cities with larger industrial carbon emissions often enjoy low annual growth rates, while the cities with smaller ones enjoy higher annual growth rate; There exists a comparatively strong positive correlation in space in per capita carbon emission; urbanization, and total population. GDP per capita and international trade are the main influencing factors of industrial carbon emissions; There are spatial spillover effects on international trade and urbanization of neighboring cities, which have a significant impact on local industrial carbon emissions.展开更多
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
文摘The computational methods of a typical dynamic mathematical model that can describe the differential element and the inertial element for the system simulation are researched. The stability of numerical solutions of the dynamic mathematical model is researched. By means of theoretical analysis, the error formulas, the error sign criteria and the error relationship criterion of the implicit Euler method and the trapezoidal method are given, the dynamic factor affecting the computational accuracy has been found, the formula and the methods of computing the dynamic factor are given. The computational accuracy of the dynamic mathematical model like this can be improved by use of the dynamic factor.
文摘In order to practice the concept of‘lucid waters and lush mountains are invaluable assets’and promote the green development of agriculture,it is necessary to improve the efficiency of agricultural energy utilization.Based on the panel data of 28 provinces from 1995 to 2018,this paper calculated China’s agricultural energy input from two categories of direct energy and indirect energy,and used EBM(Epsilon-based Measure)mixed distance function model to measure the energy efficiency of agriculture in China.The nuclear density function and spatial autocorrelation were used to analyze the dynamic evolution of agricultural energy efficiency,and the dynamic panel model was used to analyze the influencing factors of agricultural energy efficiency.The results showed that:①From 1995 to 2018,the total agricultural energy input had increased year by year in China,with an average annual growth rate of 2%.Energy input structure changed from indirect energy-based to direct energy-based.Agricultural energy efficiency showed an evolutionary trend of‘rising-stagnating-rising rapidly’in China.The agricultural energy efficiency was generally low in China,and there was a large space for improvement in agricultural energy efficiency.②From 1995 to 2018,the average annual growth rate of agricultural energy efficiency in the eastern,central and western regions was 2.7%,1.9%and 1.4%respectively.In 2018,the agricultural energy efficiency in the eastern,central and western regions was 0.81,0.71 and 0.59 respectively.The gap between regions was expanding rapidly,and the agricultural energy efficiency in the central and western regions needed to be improved.③From 1995 to 2018,the agricultural energy efficiency of each province was polarized and the absolute gap was widened.There was obvious improvement in agricultural energy efficiency in Guangdong,Shandong,Jiangxi,Jiangsu,Liaoning and Tianjin,while the agricultural energy efficiency of Xinjiang,Guizhou,Zhejiang,Shanghai,and Inner Mongolia deteriorated.④From 1995 to 2018,there was no global spatial correlation of China’s agricultural energy efficiency.However,local‘high-high’concentration gradually appeared in the eastern region since 2010.⑤The first lag of energy efficiency had a significant positive impact on agricultural energy efficiency,and agricultural energy efficiency improvement had a time lag.The level of human capital,per capita net income of farmers and the level of urbanizaton had a significant positive impact on agricultural energy efficiency.The disaster rate,the level of development of secondary and tertiary industries,and the level of opening up had a significant negative impact on agricultural energy efficiency.In the implementation of the strategy of rural revitalization,we should focus on the central and western regions,take the cultivation of professional farmers as the key,focus on improving agricultural production conditions,enhance the level of cooperation between regions,exert the leading role of the secondary and tertiary industries,and enhance the ability of agricultural disaster prevention and mitigation.
基金Supported by National Natural Science Foundation of China (NO. 52174041)Beijing Natural Science Foundation (NO. 2184120)Science Foundation of China University of Petroleum,Beijing (No. 2462018YJRC033)。
文摘The oil-water imbibition equation in the nano-scale pores considering the dynamic contact angle effect, nanoconfinement effect, inertia effect, and inlet end effect was established, and the relation between the friction coefficient of solid-oil-water three-phase contact line and the fluid viscosity in the interface zone was derived. In combination with the capillary bundle model and the lognormal distribution theory, the imbibition model of tight core was obtained and key parameters affecting imbibition dynamics were analyzed. The study shows that in the process of nanopore imbibition, the dynamic contact angle effect has the most significant impact on the imbibition, followed by nanoconfinement effect(multilayer sticking effect and slippage effect), and the inertia effect and inlet end effect have the least impact;in the initial stage of imbibition, the effect of inertial force decreases, and the effect of contact line friction increases, so the dynamic contact angle gradually increases from the initial equilibrium contact angle to the maximum and then remains basically stable;in the later stage of imbibition,the effect of contact line friction decreases, and the contact angle gradually decreases from the maximum dynamic contact angle and approaches the initial equilibrium contact angle;as the pore radius decreases, the dynamic contact angle effect increases in the initial stage of imbibition and decreases in the later stage of imbibition;as the oil-water interfacial tension increases, the imbibition power increases, and the dynamic contact angle effect increases;there is a critical value for the influence of interfacial tension on the imbibition dynamics. In improving oil recovery by imbibition in tight oil reservoir, interfacial tension too low cannot achieve good imbibition effect, and the best interfacial tension needs to be obtained through optimization.
基金Under the auspices of Chinese Ministry of Education Humanities and Social Sciences Project(No.19YJCZH241)Project of Chongqing Social Science Planning Project of China(No.2020QNGL38)+1 种基金Science and Technology Research Program of Chongqing Education Commission of China(No.KJQN201901143)Humanities and Social Sciences Research Program of Chongqing Education Commission of China(No.20SKGH169)。
文摘In this study,we developed an evaluation index system for green total-factor water-use efficiency(GTFWUE)which reflected both economic and green efficiencies of water resource utilization.Then we measured the GTFWUE of 30 provinces/municipalities/autonomous regions(hereafter provinces)in China(not including Tibet,Hong Kong,Macao,Taiwan as no data)from 2000 to 2018 using a minimum distance to the strong frontier model that contained an undesirable output.We further analyzed the regional differences and spatial correlations of GTFWUE using these values based on Global and Local Moran’s I statistics,and empirically determined the factors affecting GTFWUE using a spatial econometric model.The evaluation results revealed that the GTFWUE differed substantially between the regions.The provinces with high and low GTFWUE values were located in the coastal and inland areas of China,respectively.The eastern region had a significantly higher GTFWUE than the central and western regions.The GTFWUEs for all three regions(eastern,central,and western regions)decreased slowly from 2000 to 2011(except 2005),remained stable from 2012 to 2016,and rapidly increased in 2017 before decreasing again in 2018.We found significant spatial correlations between the provincial GTFWUEs.The GTFWUE for most provinces belonged to the high-high or low-low cluster region,revealing a significant spatial clustering effect of provincial GTFWUEs.We also found that China’s GTFWUE was highly promoted by economic growth,population size,opening-up level,and urbanization level,and was evidently hindered by water endowment,technological progress,and government influence.However,the water-use structure had little impact on GTFWUE.This study fully demonstrated that the water use mode would be improved,and water resources needed to be used more efficiently and green in China.Moreover,based on the findings of this study,several policy recommendations were proposed from the aspects of cross-regional cooperation,economy,society,and institution.
文摘This study investigates the degree of capital mobility in a panel of 16 Latin American and 4 Caribbean countries during 1960 to 2017 against the backdrop of the Feldstein-Horioka hypothesis by applying recent panel data techniques.This is the first study on capital mobility in Latin American and Caribbean countries to employ the recently developed panel data procedure of the dynamic common correlated effects modeling technique of Chudik and Pesaran(J Econ 188:393–420,2015)and the error-correction testing of Gengenbach,Urbain,and Westerlund(Panel error correction testing with global stochastic trends,2008,J Appl Econ 31:982–1004,2016).These approaches address the serious panel data econometric issues of crosssection dependence,slope heterogeneity,nonstationarity,and endogeneity in a multifactor error-structure framework.The empirical findings of this study reveal a low average(mean)savings–retention coefficient for the panel as a whole and for most individual countries,as well as indicating a cointegration relationship between saving and investment ratios.The results indicate that there is a relatively high degree of capital mobility in the Latin American and Caribbean countries in the short run,while the long-run solvency condition is maintained,which is due to reduced frictions in goods and services markets causing increase competition.Increased capital mobility in these countries can promote economic growth and hasten the process of globalization by creating a conducive economic environment for FDI in these countries.
文摘Corporate social responsibility is the inevitable requirement for the survival and development of enterprises in modern society,as well as the basic guarantee for the sustainable development of economy and society.In order to analyze the driving factors of corporate social responsibility from both internal and external aspects,the dynamic model of corporate social responsibility was constructed,and the driving strategies of corporate social responsibility were also suggested.The driving factors of corporate social responsibility include not only the external constraints of policies,regulations and stakeholders,but also the internal requirements of the sustainable development of enterprises.Only when the external driving force is transformed into the spontaneous and conscious responsibility behavior of the enterprise,can the enterprise achieve its due effect.Moreover,in order to better fulfill the social responsibility,enterprise should build a management system of social responsibility,enhance the awareness of social responsibility,and promote the effective implementation of social responsibility projects.The relevant department should strengthen the all-round supervision of corporate social responsibility,and further improve the policies,laws and regulations related to social responsibility.Enterprises should strengthen communication with stakeholders,actively disclose social responsibility information,and constantly improve social responsibility behavior.By implementing social responsibility,enterprise can improve its business environment,enhance corporate brand image and core competitiveness,and promote the sustainable development of economy and society.
基金This research is financially supported by the Science and Technology Foundation of Liaoning Province (Grant No.972240)
文摘Seismic load has a significant effect on the response of a free spanning submarine pipeline when the pipeline is constructed in a seismically active region. The model experiment is performed on an underwater shaking table to simulate the response of submarine pipelines under dynamic input. In consideration of the effects of the terrestrial and submarine pipeline, water depth, support condition, distance from seabed, empty and full pipeline, and span on dynamic response, 120 groups of experiments are conducted. Affecting factors are analyzed and conclusions are drawn for reference. For the control of dynamic response, the span of a submarine pipeline is by far more important than the other factors. Meanwhile, the rosponse difference between a submarine pipeline under sine excitation and that under random excitation exists in experiments.
文摘Spatiotemporal dynamics of the damped dc-driven Frenkel-Kontorova lattice is studied. Multistable topologies are shown. Intermittency of the dynamical contraction factor is found, and this behavior is a consequence of the collisions of kinks and antikinks. Fast kinks and antikinks are unstable. The transition from the localized kink to the whirling mode is found to be a temporal bifurcation cascade of generations of kink-antikink pairs and the collision-induced avalanche dynamics. Noise-induced topology transition is observed and discussed.
基金Projects(50708072,51378385)supported by the National Natural Science Foundation of China
文摘The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.
文摘As a green environmentally-friendly material,rubberised concrete(Ru C),which has the characteristics of low elastic modulus,large deformation capacity,high damping,good energy dissipation and good crack resistance,has attracted extensive attention and research in the civil engineering discipline.However,most of existing studies are based on experimental tests on Ru C material properties,and there has been no numerical study based on meso-scale modelling of Ru C yet.To more comprehensively investigate the Ru C dynamic material properties without conducting intensive experimental tests,this study developed a high-fidelity meso-scale model considering coarse and fine aggregates and rubber crumbs to numerically investigate the mechanical properties of rubberised concrete under different strain rates.The meso-scale model was verified against both quasi-static compressive testing data and Split Hopkinson Pressure Bar(SHPB)dynamic testing data.Using the verified numerical model,the dynamic properties of rubberised concrete with various rubber content(0%-30%)under different strain rates were studied.The numerical results show that the developed meso-scale model can use to predict the static and dynamic properties of rubberised concrete with high accuracy.The dynamic compressive strength of the rubberised concrete increases with the increment of the strain rate,and the strain rate sensitivity increases with the rubber content ranging from 0 to 30%.Based on intensive numerical simulation data,empirical DIFs is used as a function of strain rate and rubber content to predict the dynamic strength of rubberised concrete.
基金Supported by Ministry of Industry and Information(No.K24097)
文摘The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics(CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.
基金support provided by National Social Science:China’s coal industry excess capacity and policy selection issues under the background of the new normal (Nos.16BJY054)。
文摘Coal production capacity regulation is a complex system involving economic growth,structural optimization,high-efficiency mining,and environmental protection.Based on its driving factors,this paper forms four regulation modes representing different control orientations,establishes a system dynamics model,and predicts the regulation effects of single-factor and combined control mode.The result shows:(1) Except for the mechanization degree and recovery rate,the other nine individual production capacity control policies are all conducive to reducing coal production capacity and restraining the excessive growth of coal production capacity.(2) The effect of combined regulation mode on slowing down the growth of coal demand,regulating the excessive growth of coal production capacity and new capacity investment are obviously better than that of single policy.(3) The combined control modes have obvious differences in the suppression effect on coal production capacity:transformational development mode > technology-driven mode > structural optimization mode > efficiency improvement mode.Therefore,in the process of achieving optimal regulation of coal production capacity,attention should be paid to the preferential use of transformational development and technology-driven mode.At the same time,the comprehensive use of regulation and control methods should also be considered to improve the regulation effect and the regulation efficiency of coal production capacity.
基金Supported by the National High Technology Research and Development Program of China ("863" Program) (Grant No.2007AA12Z216,2007AA120502)National Natural Science Foundation of China (Grant No.40701134)
文摘Most rainfall-induced landslide forecasting models focus on the relation between landslides and rainfall,which is one of the dynamic factors,and seldom consider the stacitc factors,such as geological and geograpical factors.Landslide susceptibility,however,is determinded by both static and dynamic factors.This article proposes a static and dynamic factors-coupled forecasting model(SDFCFM) of regional rainfall-induced landslides,which quantitatively considers both the static and dynamic factors that affect landslides.The generalized additive model(GAM) is applied to coupling both factors to get the landslide susceptibility.In the case study,SDFCFM is applied to forecast the landslide occurrences in Shenzhen during a rainfall process in 2008.Compared with the rainfall logistic regression model,the resulting landslide susceptibility map illustrates that SDFCFM can reduce the forecast redundancy and improve the hit ratio.It is both applicable and practical.The application of SDFCFM in landslide warning and prevention system will improve its efficiency and also cut down the cost of human and matreial resources.
基金UAE University Under Contracts No. 07-34-07-11/07 and 07-01-07-11/09
文摘To verify the seismic design response factors of high-rise buildings, five reference structures, varying in height from 20- to 60-stories, were selected and designed according to modern design codes to represent a wide range of concrete wall structures. Verified fiber-based analytical models for inelastic simulation were developed, considering the geometric nonlinearity and material inelasticity of the structural members. The ground motion uncertainty was accounted for by employing 20 earthquake records representing two seismic scenarios, consistent with the latest understanding of the tectonic setting and seismicity of the selected reference region (UAE). A large number of Inelastic Pushover Analyses (IPAs) and Incremental Dynamic Collapse Analyses (IDCAs) were deployed for the reference structures to estimate the seismic design response factors. It is concluded that the factors adopted by the design code are adequately conservative. The results of this systematic assessment of seismic design response factors apply to a wide variety of contemporary concrete wall buildings with various characteristics.
基金supported by National Natural Science Foundation of China (Grant No.71373079)Planning Projects of Philosophy and Social Science of Zhejiang Province (Grant No. 11YD07Z)
文摘This paper calculates the industrial carbon emissions of the Yangtze River Delta urban agglomeration over the period 2006-2013. An empirical analysis is conducted to find out the influencing factors of industrial carbon emissions of the Yangtze River Delta urban agglomeration, using a spatial Durbin panel model. The results show that cities with larger industrial carbon emissions often enjoy low annual growth rates, while the cities with smaller ones enjoy higher annual growth rate; There exists a comparatively strong positive correlation in space in per capita carbon emission; urbanization, and total population. GDP per capita and international trade are the main influencing factors of industrial carbon emissions; There are spatial spillover effects on international trade and urbanization of neighboring cities, which have a significant impact on local industrial carbon emissions.