Two novel mixed-ligand complexes, [M(phen)2(ans)2]·H2O (M = Cd(Ⅱ) 1, Zn(Ⅱ) 2; phen is 1, 10-phenanthroline, and ans is 4-aminonaphthalene-1-sulfonate), were obtained from the reaction of 1, 10-phenant...Two novel mixed-ligand complexes, [M(phen)2(ans)2]·H2O (M = Cd(Ⅱ) 1, Zn(Ⅱ) 2; phen is 1, 10-phenanthroline, and ans is 4-aminonaphthalene-1-sulfonate), were obtained from the reaction of 1, 10-phenanthroline, sodium 4-aminonaphthalene-1-sulfonate tetrahydrate and acetate in mixed solvents. Interaction of the complexes with calf thymus DNA (ctDNA) were investigated using UV-vis absorption spectra, luminescence titrations, steady-state emission quenching by [Fe(CN)6]4 , DNA competitive binding with ethidium bromide (EB) and viscosity measurements. The experimental results indicate that there exist two interaction modes between the complexes and DNA, namely the electrostatic interaction and intercalation, with the binding constants of 1.82 × 10^5 M-1 for 1 and 4.78 ×10^4 M^- 1 for 2 in buffer of 50 mM NaCl and 5 mM Tris-HCI (pH 7.0).展开更多
A novel trinuclear nickel(II) complex [Ni3(bushz)z(Himdz)2(H20)2].2DMF (1, bushz = N-butylsalicylhydrazide, Himdz = imidazole, DMF = N,N-dimethyl-forrnamide) has been synthesized and characterized by X-ray s...A novel trinuclear nickel(II) complex [Ni3(bushz)z(Himdz)2(H20)2].2DMF (1, bushz = N-butylsalicylhydrazide, Himdz = imidazole, DMF = N,N-dimethyl-forrnamide) has been synthesized and characterized by X-ray single-crystal diffraction characterization. Complex 1 crystallizes in the monoclinic system, space group P2 1/c with a = 7.706(7), b = 14.882(6), c = 18.639(6) A, β = 108.08(2)°, V= 2032(1) A3, Dc = 1.525 g/cm3, Mr = 932.95, Z= 2, F(000) = 972,μ = 1.442 mm-1, the final R = 0.0359 and wR = 0.0771. The three nickel(II) atoms in 1 are arranged in a strictly linear structure and exhibit alternating square-planar and octahedral geometries. The complex is connected to form a supramolecule with an infinite three-dimensional network through intermolecular hydrogen bonds. The electrochemical studies reveal that redox of Ni3+/Ni2+ in the complex is a quasi-reversible process. The thermal stability of the title complex was also studied.展开更多
The mononuclear copper(Ⅱ) complex [Cu(L)(2-AP)] 1 and binuclear copper(Ⅱ) complex [Cu(L)(py)]2 2 (L = C10H11O5NS, taurine o-vanillin, py = prydine, 2-AP = 2-aminopyridine) with mixed ligand have been s...The mononuclear copper(Ⅱ) complex [Cu(L)(2-AP)] 1 and binuclear copper(Ⅱ) complex [Cu(L)(py)]2 2 (L = C10H11O5NS, taurine o-vanillin, py = prydine, 2-AP = 2-aminopyridine) with mixed ligand have been synthesized and characterized by X-ray diffraction method. Crystal data for 1: orthorhombic, space group Pbca with a = 11.921(4), b = 15.816(6), c = 17.076(6) A, V= 3219.7(19) A^3, C15H17CuN3O5S, Z = 8, Mr = 414.92, De = 1.712 g/cm^3,μ(MoKα) = 1.520 mm^-1, F(000) = 1704, the final R = 0.0300 and wR = 0.0705 for 2840 observed reflections with I 〉 2σ(I); and crystal data for 2: monoclinic, space group P21/c with a = 7.929(3), b = 17.038(5), c = 11.734(4) A, β = 98.162(6)°, V = 1569.1(9) A^3, C15H16CuN2O5S, Z = 4, Mr = 399.90, Dc = 1.693 g/cm^3, F(000) = 820,μ(MoKα) = 1.554 mm^-1, the final R = 0.0351 and wR = 0.0848 for 2767 observed reflections (I 〉 2σ(I)). The molecular structure of complex 1 consists of one tetra-coordinated Cu(Ⅱ) atom generating a slightly distorted square plane, and a one-dimensional chain structure is formed by intermolecular hydrogen bonds. Complex 2 consists of a diphenolic hydroxyl O-bridged binuclear copper(Ⅱ) structure. The crystal structures of complexes 1 and 2 reveal that the coordinate copper centers are bound to both nitrogen and oxygen atom donors. The usual N,O-trans arrangement of ligands is observed in both cases.展开更多
Five triboluminescent mixed-ligand complexes of Eu^(3+)with thenoyltrifluoroacetone(TTA)and pyridine-N-oxide or its substitutive derivatives have been prepared.They are all pale yellow crystalline com- pounds with the...Five triboluminescent mixed-ligand complexes of Eu^(3+)with thenoyltrifluoroacetone(TTA)and pyridine-N-oxide or its substitutive derivatives have been prepared.They are all pale yellow crystalline com- pounds with the formula of Eu(TTA)_3·L(L=py NO.2-pie NO,3-pie NO,4-pic NO,bipy N_2O_2).Their physico-chemical properties have been studied with conductometry,UV and IR absorption and fluorescence spectroscopy.Once the complexes are touched or rubbed by a glass rod,they emit strong red triboluminescent light which is similar to the characteristic fluorescence of Eu^(3+).展开更多
To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S...Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.展开更多
In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability t...In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.展开更多
A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstru...A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.展开更多
This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to co...This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.展开更多
Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features...Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.展开更多
This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is ...This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.展开更多
As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with ...As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.展开更多
The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to d...The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.展开更多
Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16...Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.展开更多
This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which us...This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which uses two interfering subsets in order to improve the performance of the transmission scheme. The idea is to spread in a coherent manner some data amongst two different codes belonging to the two different subsets involved in complex orthogonal frequency-division multiplexing with quadrature amplitude modulation and code division multiplexing access. This will improve the useful signal level at the receiving side and therefore improve the decoding process especially at low signal to noise ratio. However, this procedure implies some interference with other codes therefore creating a certain noise which is noticeable at high signal to noise ratio.展开更多
Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of part...Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of particles,as well as the discharge glow,strongly depend on discharge parameters.However,traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy,time-consuming and high requirement of instruments.To solve these problems,by combining the two mechanisms of attention mechanism(strengthening the extraction of the channel feature)and shortcut connection(enabling the input information to be directly transmitted to deep networks and avoiding the disappearance or explosion of gradients),the network of squeeze and excitation convolution with shortcut(SECS)for complex plasma image recognition is proposed to effectively improve the model performance.The results show that the accuracy,precision,recall and F1-Score of our model are superior to other models in complex plasma image recognition,and the recognition accuracy reaches 97.38%.Moreover,the recognition accuracy for the Flowers and Chest X-ray publicly available data sets reaches 97.85%and 98.65%,respectively,and our model has robustness.This study shows that the proposed model provides a new method for the diagnosis of complex plasma images and also provides technical support for the application of plasma in industrial production.展开更多
Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained thro...Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.展开更多
This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4...This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4-(2-pyridylmethyleneamino)-phenyl]methane(L3).Single-crystal X-ray diffraction analysis reveals that the complexes[Co_(2)(L1)3](ClO_(4))4·2CH_(3)CN(1),[Co_(2)(L2)3](ClO_(4))4·2CH_(3)OH(2),and[Co_(2)(L3)3](ClO_(4))4·2CH_(3)OH(3)all exhibit a dinuclear structure.Magnetic test results show that complex 3 exhibited irreversible SCO behavior induced by loss of solvent at 300 K,with the average Co-N bond length increasing from 0.2139(3)to 0.2153(3)nm.Meanwhile,the desolvated complex 3 exhibited paramagnetic behavior similar to that of complexes 1 and 2.Variable-temperature UV-Vis spectroscopic studies also indicate that complex 3 undergoes a solvent-loss-induced spin-state transition.CCDC:2347354,1(120 K);2347355,2(120 K);2347356,3(120 K);2347357,3(400 K).展开更多
Complex plasma fluctuation processes have been extensively studied in many aspects,especially lattice waves in strongly coupled plasma crystals,which are of great significance for understanding fundamental physical ph...Complex plasma fluctuation processes have been extensively studied in many aspects,especially lattice waves in strongly coupled plasma crystals,which are of great significance for understanding fundamental physical phenomena.A challenge of experimental investigations in two-dimensional strongly coupled complex plasma crystals is to keep the main body and foreign particles of different masses on the same horizontal plane.To solve the problem,we have proposed a potential well formed by two negatively biased grids to bind the negatively charged particles in a two-dimensional(2D)plane,thus achieving a 2D plasma crystal in the microgravity environment.The study of such phenomena in complex plasma crystals under microgravity environment then becomes possible.In this paper,we focus on the continuum spectrum,including both phonon and optic branches of the impurity mode in a 2D system in microgravity environments.The results show the dispersion relation of the longitudinal and transverse impurity oscillation modes and their properties.Considering the macroscopic visibility of complex mesoscopic particle lattices,theoretical and experimental studies on this kind of complex plasma systems will help us further understand the physical nature of a wide range of condensed matters.展开更多
Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples ...Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples were taken from the Qazzaz metamorphic core complex to estimate the finite strain for felsic and mafic minerals.These samples included gneisses rocks,monzogranite,and metavolcano-sedimentary rocks for both the Thalbah and Bayda groups.Using the Rf/j and Fry methods,the axial ratios(XZ)range about 2.20 to 7.10 and 1.90 to 9.10,respectively.For various rock units,the strain measurements show moderate to highly deformation.Most of the observed samples show shallow WNW dipping along a N to WNW trend of finite strain(X).The short axes(Z)based to be subvertical foliation related with a subhorizontal foliation.The results demonstrate that contacts generated at semi-brittle to ductile deformation and that the strain of magnitude has the same value for different lithologic units.It concluded that nappe generation in orogens results from pure shear deformation.展开更多
基金Funded by Key Project of the National Natural Science Foundation of China (No. 60537050)
文摘Two novel mixed-ligand complexes, [M(phen)2(ans)2]·H2O (M = Cd(Ⅱ) 1, Zn(Ⅱ) 2; phen is 1, 10-phenanthroline, and ans is 4-aminonaphthalene-1-sulfonate), were obtained from the reaction of 1, 10-phenanthroline, sodium 4-aminonaphthalene-1-sulfonate tetrahydrate and acetate in mixed solvents. Interaction of the complexes with calf thymus DNA (ctDNA) were investigated using UV-vis absorption spectra, luminescence titrations, steady-state emission quenching by [Fe(CN)6]4 , DNA competitive binding with ethidium bromide (EB) and viscosity measurements. The experimental results indicate that there exist two interaction modes between the complexes and DNA, namely the electrostatic interaction and intercalation, with the binding constants of 1.82 × 10^5 M-1 for 1 and 4.78 ×10^4 M^- 1 for 2 in buffer of 50 mM NaCl and 5 mM Tris-HCI (pH 7.0).
基金Supported by the Foundation of Fujian Educational Committee, China (No. JB10007 and JB10004)
文摘A novel trinuclear nickel(II) complex [Ni3(bushz)z(Himdz)2(H20)2].2DMF (1, bushz = N-butylsalicylhydrazide, Himdz = imidazole, DMF = N,N-dimethyl-forrnamide) has been synthesized and characterized by X-ray single-crystal diffraction characterization. Complex 1 crystallizes in the monoclinic system, space group P2 1/c with a = 7.706(7), b = 14.882(6), c = 18.639(6) A, β = 108.08(2)°, V= 2032(1) A3, Dc = 1.525 g/cm3, Mr = 932.95, Z= 2, F(000) = 972,μ = 1.442 mm-1, the final R = 0.0359 and wR = 0.0771. The three nickel(II) atoms in 1 are arranged in a strictly linear structure and exhibit alternating square-planar and octahedral geometries. The complex is connected to form a supramolecule with an infinite three-dimensional network through intermolecular hydrogen bonds. The electrochemical studies reveal that redox of Ni3+/Ni2+ in the complex is a quasi-reversible process. The thermal stability of the title complex was also studied.
基金This work was supported by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM20051028005)
文摘The mononuclear copper(Ⅱ) complex [Cu(L)(2-AP)] 1 and binuclear copper(Ⅱ) complex [Cu(L)(py)]2 2 (L = C10H11O5NS, taurine o-vanillin, py = prydine, 2-AP = 2-aminopyridine) with mixed ligand have been synthesized and characterized by X-ray diffraction method. Crystal data for 1: orthorhombic, space group Pbca with a = 11.921(4), b = 15.816(6), c = 17.076(6) A, V= 3219.7(19) A^3, C15H17CuN3O5S, Z = 8, Mr = 414.92, De = 1.712 g/cm^3,μ(MoKα) = 1.520 mm^-1, F(000) = 1704, the final R = 0.0300 and wR = 0.0705 for 2840 observed reflections with I 〉 2σ(I); and crystal data for 2: monoclinic, space group P21/c with a = 7.929(3), b = 17.038(5), c = 11.734(4) A, β = 98.162(6)°, V = 1569.1(9) A^3, C15H16CuN2O5S, Z = 4, Mr = 399.90, Dc = 1.693 g/cm^3, F(000) = 820,μ(MoKα) = 1.554 mm^-1, the final R = 0.0351 and wR = 0.0848 for 2767 observed reflections (I 〉 2σ(I)). The molecular structure of complex 1 consists of one tetra-coordinated Cu(Ⅱ) atom generating a slightly distorted square plane, and a one-dimensional chain structure is formed by intermolecular hydrogen bonds. Complex 2 consists of a diphenolic hydroxyl O-bridged binuclear copper(Ⅱ) structure. The crystal structures of complexes 1 and 2 reveal that the coordinate copper centers are bound to both nitrogen and oxygen atom donors. The usual N,O-trans arrangement of ligands is observed in both cases.
文摘Five triboluminescent mixed-ligand complexes of Eu^(3+)with thenoyltrifluoroacetone(TTA)and pyridine-N-oxide or its substitutive derivatives have been prepared.They are all pale yellow crystalline com- pounds with the formula of Eu(TTA)_3·L(L=py NO.2-pie NO,3-pie NO,4-pic NO,bipy N_2O_2).Their physico-chemical properties have been studied with conductometry,UV and IR absorption and fluorescence spectroscopy.Once the complexes are touched or rubbed by a glass rod,they emit strong red triboluminescent light which is similar to the characteristic fluorescence of Eu^(3+).
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金supported by the Fundamental Research Funds for the Central Universities(No.20CX05005A)the Major Scientific and Technological Projects of CNPC(No.ZD2019-184-001)+2 种基金the PetroChina Innovation Foundation(No.2018D-5007-0214)the Shandong Provincial Natural Science Foundation(No.ZR2019MEE095)the National Natural Science Foundation of China(No.42174141).
文摘Clays have considerable influence on the electrical properties of hydrate-bearing sediments.It is desirable to understand the electrical properties of hydrate-bearing clayey sediments and to build hydrate saturation(S_(h))models for reservoir evaluation and monitoring.The electrical properties of tetrahydrofuran-hydrate-bearing sediments with montmorillonite are characterized by complex conductivity at frequencies from 0.01 Hz to 1 kHz.The effects of clay and Sh on the complex conductivity were analyzed.A decrease and increase in electrical conductance result from the clay-swelling-induced blockage and ion migration in the electrical double layer(EDL),respectively.The quadrature conductivity increases with the clay content up to 10%because of the increased surface site density of counterions in EDL.Both the in-phase conductivity and quadrature conductivity decrease consistently with increasing Sh from 0.50 to 0.90.Three sets of models for Sh evaluation were developed.The model based on the Simandoux equation outperforms Archie’s formula,with a root-mean-square error(E_(RMS))of 1.8%and 3.9%,respectively,highlighting the clay effects on the in-phase conductivity.The fre-quency effect correlations based on in-phase and quadrature conductivities exhibit inferior performance(E_(RMS)=11.6%and 13.2%,re-spectively)due to the challenge of choosing an appropriate pair of frequencies and intrinsic uncertainties from two measurements.The second-order Cole-Cole formula can be used to fit the complex-conductivity spectra.One pair of inverted Cole-Cole parameters,i.e.,characteristic time and chargeability,is employed to predict S_(h) with an E_(RMS) of 5.05%and 9.05%,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12275179 and 11875042)the Natural Science Foundation of Shanghai Municipality,China(Grant No.21ZR1443900)。
文摘In recent years,there has been a growing interest in graph convolutional networks(GCN).However,existing GCN and variants are predominantly based on simple graph or hypergraph structures,which restricts their ability to handle complex data correlations in practical applications.These limitations stem from the difficulty in establishing multiple hierarchies and acquiring adaptive weights for each of them.To address this issue,this paper introduces the latest concept of complex hypergraphs and constructs a versatile high-order multi-level data correlation model.This model is realized by establishing a three-tier structure of complexes-hypergraphs-vertices.Specifically,we start by establishing hyperedge clusters on a foundational network,utilizing a second-order hypergraph structure to depict potential correlations.For this second-order structure,truncation methods are used to assess and generate a three-layer composite structure.During the construction of the composite structure,an adaptive learning strategy is implemented to merge correlations across different levels.We evaluate this model on several popular datasets and compare it with recent state-of-the-art methods.The comprehensive assessment results demonstrate that the proposed model surpasses the existing methods,particularly in modeling implicit data correlations(the classification accuracy of nodes on five public datasets Cora,Citeseer,Pubmed,Github Web ML,and Facebook are 86.1±0.33,79.2±0.35,83.1±0.46,83.8±0.23,and 80.1±0.37,respectively).This indicates that our approach possesses advantages in handling datasets with implicit multi-level structures.
基金Supported by Central Government Guided Local Science and Technology Innovation Fund Program(ZY20B13)。
文摘A new pore type,nano-scale organo-clay complex pore-fracture was first discovered based on argon ion polishing-field emission scanning electron microscopy,energy dispersive spectroscopy and three-dimensional reconstruction by focused ion-scanning electron in combination with analysis of TOC,R_(o)values,X-ray diffraction etc.in the Cretaceous Qingshankou Formation shale in the Songliao Basin,NE China.Such pore characteristics and evolution study show that:(1)Organo-clay complex pore-fractures are developed in the shale matrix and in the form of spongy and reticular aggregates.Different from circular or oval organic pores discovered in other shales,a single organo-clay complex pore is square,rectangular,rhombic or slaty,with the pore diameter generally less than 200 nm.(2)With thermal maturity increasing,the elements(C,Si,Al,O,Mg,Fe,etc.)in organo-clay complex change accordingly,showing that organic matter shrinkage due to hydrocarbon generation and clay mineral transformation both affect organo-clay complex pore-fracture formation.(3)At high thermal maturity,the Qingshankou Formation shale is dominated by nano-scale organo-clay complex pore-fractures with the percentage reaching more than 70%of total pore space.The spatial connectivity of organo-clay complex pore-fractures is significantly better than that of organic pores.It is suggested that organo-complex pore-fractures are the main pore space of laminar shale at high thermal maturity and are the main oil and gas accumulation space in the core area of continental shale oil.The discovery of nano-scale organo-clay complex pore-fractures changes the conventional view that inorganic pores are the main reservoir space and has scientific significance for the study of shale oil formation and accumulation laws.
文摘This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11975087,42261134533,and 42011530086)the National Magnetic Confinement Fusion Energy Research and Development Program of China(Grant No.2022YFE03190400)the Heilongjiang Touyan Innovation Team Program,China.
文摘Magnetic reconnection processes in three-dimensional(3D)complex field configurations have been investigated in different magneto-plasma systems in space,laboratory,and astrophysical systems.Two-dimensional(2D)features of magnetic reconnection have been well developed and applied successfully to systems with symmetrical property,such as toroidal fusion plasmas and laboratory experiments with an axial symmetry.But in asymmetric systems,the 3D features are inevitably different from those in the 2D case.Magnetic reconnection structures in multiple celestial body systems,particularly star-planet-Moon systems,bring fresh insights to the understanding of the 3D geometry of reconnection.Thus,we take magnetic reconnection in an ancient solar-lunar terrestrial magneto-plasma system as an example by using its crucial parameters approximately estimated already and also some specific applications in pathways for energy and matter transports among Earth,ancient Moon,and the interplanetary magnetic field(IMF).Then,magnetic reconnection of the ancient lunar-terrestrial magnetospheres with the IMF is investigated numerically in this work.In a 3D simulation for the Earth-Moon-IMF system,topological features of complex magnetic reconnection configurations and dynamical characteristics of magnetic reconnection processes are studied.It is found that a coupled lunar-terrestrial magnetosphere is formed,and under various IMF orientations,multiple X-points emerge at distinct locations,showing three typical magnetic reconnection structures in such a geometry,i.e.,the X-line,the triple current sheets,and the A-B null pairs.The results can conduce to further understanding of reconnection physics in 3D for plasmas in complex magnetic configurations,and also a possible mechanism for energy and matters transport in evolutions of similar astrophysical systems.
文摘This work deals with the synthesis and physicochemical characterizations of a new group of novel retinoidal ligands and their metal complexes. Their in vitro anti-proliferative activities have shown that ligand L1 is effective against human breast cancer BT-20 and MCF-7 cell lines. At the same time, compound L2 exerts its effect on human prostate cancer PC-3 and human breast cancer MDA-MB-231 and MCF-7 cell lines respectively. The retinoid ligands exert their pleiotropic action toward retinoic acid receptors (RARs) than their metal complexes but all compounds exhibit concentration-dependent.
基金supported in part by the National Natural Science Foundation Original Exploration Project of China under Grant 62250004the National Natural Science Foundation of China under Grant 62271244+1 种基金the Natural Science Fund for Distinguished Young Scholars of Jiangsu Province under Grant BK20220067the Natural Sciences and Engineering Research Council of Canada (NSERC)
文摘As the demand for high-quality services proliferates,an innovative network architecture,the fully-decoupled RAN(FD-RAN),has emerged for more flexible spectrum resource utilization and lower network costs.However,with the decoupling of uplink base stations and downlink base stations in FDRAN,the traditional transmission mechanism,which relies on real-time channel feedback,is not suitable as the receiver is not able to feedback accurate and timely channel state information to the transmitter.This paper proposes a novel transmission scheme without relying on physical layer channel feedback.Specifically,we design a radio map based complex-valued precoding network(RMCPNet)model,which outputs the base station precoding based on user location.RMCPNet comprises multiple subnets,with each subnet responsible for extracting unique modal features from diverse input modalities.Furthermore,the multimodal embeddings derived from these distinct subnets are integrated within the information fusion layer,culminating in a unified representation.We also develop a specific RMCPNet training algorithm that employs the negative spectral efficiency as the loss function.We evaluate the performance of the proposed scheme on the public DeepMIMO dataset and show that RMCPNet can achieve 16%and 76%performance improvements over the conventional real-valued neural network and statistical codebook approach,respectively.
文摘The mafic enclaves from Paleoproterozoic domain are considered to be the results of large-scale crust-mantle interaction and magma mixing. In this paper, petrography, mineralogy and geochemistry were jointly used to determine the origin of the mafic enclaves and their relationship with the host granitoids of the Kan granite-gneiss complex. This study also provides new information on crust-mantle interactions. The mafic enclaves of the Kan vary in shape and size and have intermediate chemical compositions. The diagrams used show a number of similarities in the major elements (and often in the trace elements) between the mafic enclaves and the host granitoids. Geochemical show that the Kan rock are metaluminous, enriched in silica, medium to high-K calc-alkaline I-type granite. The similarities reflect a mixing of basic and acid magma. Mafic enclaves have a typical magmatic structure, which is characterized by magma mixing. The genesis of these rocks is associated with the context of subduction. They result from the mixing of a mafic magma originating from the mantle and linked to subduction, and a granitic magma (type I granite) that arises from the partial melting of the crust.
基金This study was supported by the National Water Pollution Control and Treatment Science and Technology Major Project(2017ZX07101-002).
文摘Tree interactions are essential for the structure,dynamics,and function of forest ecosystems,but variations in the architecture of life-stage interaction networks(LSINs)across forests is unclear.Here,we constructed 16 LSINs in the mountainous forests of northwest Hebei,China based on crown overlap from four mixed forests with two dominant tree species.Our results show that LSINs decrease the complexity of stand densities and basal areas due to the interaction cluster differentiation.In addition,we found that mature trees and saplings play different roles,the first acting as“hub”life stages with high connectivity and the second,as“bridges”controlling information flow with high centrality.Across the forests,life stages with higher importance showed better parameter stability within LSINs.These results reveal that the structure of tree interactions among life stages is highly related to stand variables.Our efforts contribute to the understanding of LSIN complexity and provide a basis for further research on tree interactions in complex forest communities.
文摘This article is about orthogonal frequency-division multiplexing with quadrature amplitude modulation combined with code division multiplexing access for complex data transmission. It aims to present a method which uses two interfering subsets in order to improve the performance of the transmission scheme. The idea is to spread in a coherent manner some data amongst two different codes belonging to the two different subsets involved in complex orthogonal frequency-division multiplexing with quadrature amplitude modulation and code division multiplexing access. This will improve the useful signal level at the receiving side and therefore improve the decoding process especially at low signal to noise ratio. However, this procedure implies some interference with other codes therefore creating a certain noise which is noticeable at high signal to noise ratio.
基金This study was supported by a grand from the National Natural Science Foundation of China(No.12075315).
文摘Complex plasma widely exists in thin film deposition,material surface modification,and waste gas treatment in industrial plasma processes.During complex plasma discharge,the configuration,distribution,and size of particles,as well as the discharge glow,strongly depend on discharge parameters.However,traditional manual diagnosis methods for recognizing discharge parameters from discharge images are complicated to operate with low accuracy,time-consuming and high requirement of instruments.To solve these problems,by combining the two mechanisms of attention mechanism(strengthening the extraction of the channel feature)and shortcut connection(enabling the input information to be directly transmitted to deep networks and avoiding the disappearance or explosion of gradients),the network of squeeze and excitation convolution with shortcut(SECS)for complex plasma image recognition is proposed to effectively improve the model performance.The results show that the accuracy,precision,recall and F1-Score of our model are superior to other models in complex plasma image recognition,and the recognition accuracy reaches 97.38%.Moreover,the recognition accuracy for the Flowers and Chest X-ray publicly available data sets reaches 97.85%and 98.65%,respectively,and our model has robustness.This study shows that the proposed model provides a new method for the diagnosis of complex plasma images and also provides technical support for the application of plasma in industrial production.
基金Project supported by the National Natural Science Foundation of China (Grant No. 12161061)the Fundamental Research Funds for the Inner Mongolia University of Finance and Economics (Grant No. NCYWT23036)+2 种基金the Young Innovative and Entrepreneurial Talents of the Inner Mongolia Grassland Talents Project in 2022,Autonomous Region “Five Major Tasks” Research Special Project for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. NCXWD2422)High Quality Research Achievement Cultivation Fund for the Inner Mongolia University of Finance and Economics in 2024 (Grant No. GZCG2426)the Talent Development Fund of Inner Mongolia Autonomous Region, China。
文摘Under investigation in this paper is a complex modified Korteweg–de Vries(KdV) equation, which describes the propagation of short pulses in optical fibers. Bilinear forms and multi-soliton solutions are obtained through the Hirota method and symbolic computation. Breather-like and bound-state solitons are constructed in which the signs of the imaginary parts of the complex wave numbers and the initial separations of the two parallel solitons are important factors for the interaction patterns. The periodic structures and position-induced phase shift of some solutions are introduced.
文摘This study presents the synthesis of three dinuclear cobalt complexes based on three imine derivatives:bis-[4-(2-pyridylmethyleneamino)-phenyl]thioether(L1),bis-[4-(2-pyridylmethyleneamino)-phenyl]ether(L2),and bis-[4-(2-pyridylmethyleneamino)-phenyl]methane(L3).Single-crystal X-ray diffraction analysis reveals that the complexes[Co_(2)(L1)3](ClO_(4))4·2CH_(3)CN(1),[Co_(2)(L2)3](ClO_(4))4·2CH_(3)OH(2),and[Co_(2)(L3)3](ClO_(4))4·2CH_(3)OH(3)all exhibit a dinuclear structure.Magnetic test results show that complex 3 exhibited irreversible SCO behavior induced by loss of solvent at 300 K,with the average Co-N bond length increasing from 0.2139(3)to 0.2153(3)nm.Meanwhile,the desolvated complex 3 exhibited paramagnetic behavior similar to that of complexes 1 and 2.Variable-temperature UV-Vis spectroscopic studies also indicate that complex 3 undergoes a solvent-loss-induced spin-state transition.CCDC:2347354,1(120 K);2347355,2(120 K);2347356,3(120 K);2347357,3(400 K).
基金supported by“Undergraduate Innovation and Entrepreneurship Training Program”at Harbin Institute of Technology。
文摘Complex plasma fluctuation processes have been extensively studied in many aspects,especially lattice waves in strongly coupled plasma crystals,which are of great significance for understanding fundamental physical phenomena.A challenge of experimental investigations in two-dimensional strongly coupled complex plasma crystals is to keep the main body and foreign particles of different masses on the same horizontal plane.To solve the problem,we have proposed a potential well formed by two negatively biased grids to bind the negatively charged particles in a two-dimensional(2D)plane,thus achieving a 2D plasma crystal in the microgravity environment.The study of such phenomena in complex plasma crystals under microgravity environment then becomes possible.In this paper,we focus on the continuum spectrum,including both phonon and optic branches of the impurity mode in a 2D system in microgravity environments.The results show the dispersion relation of the longitudinal and transverse impurity oscillation modes and their properties.Considering the macroscopic visibility of complex mesoscopic particle lattices,theoretical and experimental studies on this kind of complex plasma systems will help us further understand the physical nature of a wide range of condensed matters.
基金supported and funded by the Researchers Supporting Project(Project No.RSPD2024R781),King Saud University,Riyadh,Saudi Arabia。
文摘Identifying deformational mechanisms and associated structures at various scales,ranging from regional-scale structures to microscopic fabric,is crucial for the assessment of tectonic development.Thirty-three samples were taken from the Qazzaz metamorphic core complex to estimate the finite strain for felsic and mafic minerals.These samples included gneisses rocks,monzogranite,and metavolcano-sedimentary rocks for both the Thalbah and Bayda groups.Using the Rf/j and Fry methods,the axial ratios(XZ)range about 2.20 to 7.10 and 1.90 to 9.10,respectively.For various rock units,the strain measurements show moderate to highly deformation.Most of the observed samples show shallow WNW dipping along a N to WNW trend of finite strain(X).The short axes(Z)based to be subvertical foliation related with a subhorizontal foliation.The results demonstrate that contacts generated at semi-brittle to ductile deformation and that the strain of magnitude has the same value for different lithologic units.It concluded that nappe generation in orogens results from pure shear deformation.