The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status...The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.展开更多
An experiment was carried out for two consecutive growing seasons (2012 and 2013) at the Research Site of the Lower Niger River Basin Development Authority, Ejiba, Nigeria, to examine the response of sorghum to tillag...An experiment was carried out for two consecutive growing seasons (2012 and 2013) at the Research Site of the Lower Niger River Basin Development Authority, Ejiba, Nigeria, to examine the response of sorghum to tillage methods and foliar fertilizer (Boost ExtraTM) application. A split plot experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates to randomize the tillage methods (main plots) and foliar fertilizer application (sub-plots), respectively. The experiment comprised of three tillage methods: No Tillage (NT), Manual Tillage (MT) and convectional tillage (Ploughing, Harrowing and Ridging, PHR) and three foliar fertilizer rates: 0, 2 and 4 liters of foliar fertilizer per hectare. The parameters taken on soil physical properties and weed characters are soil moisture content (%), soil temperature (℃), weed species and weed dry weight (g). Growth and yield parameters taken are: average plant height (cm), stem girth (cm), leaf area (m2), days to 50% flowering, root dry weight (g), shoot dry weight (g), weight of 1000 seeds and grain yield per land area. Weeds were identified and harvested, and their dry weights were taken and recorded. Data were also collected from ten randomly selected plants in each plot. The data were statistically analyzed using GENSTAT. The analysis of variance (ANOVA) was carried out to find out the significance of variation among the treatments while the significant differences between mean treatments were separated using Duncan’s Multiple Range Test (DMRT) at 5% level of probability. The results obtained from this study indicated that tillage methods and foliar fertilizer application significantly affected growth and yield parameters of sorghum, consequently the yield per unit area. The results also indicated that “Manually Tilled” seedbed (MT) improved soil physical properties better than either plots with PHR or No Till plots in the study area. Foliar fertilizer application at 2 l/ha performed best in terms of growth and yield. It is therefore recommended that manual tillage should be used as a method of seedbed preparation for sorghum production. However, better and stable grain yield of sorghum could be obtained with the practice of manual tillage (MT) in combination with foliar fertilization at rate of 2 litres/ha. It is recommended that different tillage methods should be combined with foliar fertilizer application for higher grain yield in the study area.展开更多
“High nutrient, low chlorophyll (HNLC)” regions were created by locking iron into sedimentary iron sulfides with hydrogen sulfide available from volcanic eruptions in surrounding oceans. Appropriate locations and de...“High nutrient, low chlorophyll (HNLC)” regions were created by locking iron into sedimentary iron sulfides with hydrogen sulfide available from volcanic eruptions in surrounding oceans. Appropriate locations and deployment methods for the iron fertilization were far from volcanoes, earthquakes and boundaries of tectonic plates to reduce the chance of iron-locking by volcanic sulfur compounds. The appropriate locations for the large-scale iron fertilization are proposed as Shag Rocks in South Georgia and the Bransfield Strait in Drake Passage in the Southern Ocean due to their high momentum flux causing efficient iron deployment. The iron (Fe) replete compounds, consisting of natural clay, volcanic ash, agar, N</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">-fixing mucilaginous cyanobacteria, carbon black, biodegradable plastic foamed polylactic acid, fine wood chip, and iron-reducing marine bacterium, are deployed in the ocean to stay within a surface depth of 100</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-size:12px;font-family:Verdana;"><span style="font-size:12px;font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">m for phytoplankton digestion. The deployment method of Fe-replete composite with a duration of at least several years for the successful iron fertilization, is configured to be on the streamline of the Antarctic Circumpolar Current (ACC). This will result in high momentum flux for its efficient dispersion on the ocean surface where diatom, copepods, krill and humpback whale stay together (~100</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">m). Humpback whales are proposed as a biomarker for the successful iron fertilization in large-scale since humpback whales feed on krill, which in turn feed on cockpods and diatoms. The successful large-scale iron fertilization may be indicated by the return of the humpback whales if they could not be found for a long period before the iron fertilization. On-line monitoring for the successful iron fertilization focuses on the simultaneous changes of the following two groups;the increase concentration group (chlorophyll, O</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved Oxygen (DO), Di Methyl Sulfide (DMS)) and the decrease concentration group (nitrate, phosphate, silicate, CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;"> (DCO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">)). The monitoring of chlorophyll-</span><i><span style="font-size:12px;font-family:Verdana;">a</span></i><span style="font-size:12px;font-family:Verdana;">, nitrate phosphate, and silicate concentrations after deploying the Fe-replete complex is carried out throughout the day and night for the accurate measurement of algal blooms.展开更多
[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer...[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer application methods on dynamic changes of grain protein content and glutenin content of Yumai 49 and Yumai 66 during wheat grain filling stage were studied under the field conditions. [Result] Both the grain protein and glutenin content of two cultivars were increased by sulfur fertilizer, particularly, the effects on Yumai 49 were more significant.[ Conclusion] The grain content and glutenin content of different wheat cultivars could be increased by taking different sulfur fertilizer application methods.展开更多
A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surfa...A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3- -N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.展开更多
The study discussed the rapid method to test and predict the longevity of controlled release fertilizers (CRFs) coated by water soluble resin by using the short-term leaching under higher temperature. Pure water dis...The study discussed the rapid method to test and predict the longevity of controlled release fertilizers (CRFs) coated by water soluble resin by using the short-term leaching under higher temperature. Pure water dissolving incubation and higher temperature leaching were used to study the patterns of the nutrient release of the CRFs. The correlation analysis between the days at 25℃ and the hours at 80℃ of Trincote 1 and Trincote 2 for the same cumulative release rates were conducted. Patterns of cumulative nutrient release curve followed one factor quadratic regression equation at each given temperatures, and each of relative coefficient was bigger than 0.995. As the temperature increased, nutrients release of the CRFs increased. The longevity of resin coated CRFs were predicted by use of both the cumulative nutrients release equation at 80℃ and the regression equation of release time needed for the same cumulative release rates between 25 and 80℃. There were only 0.3-6.9% relative errors between the tested longevity and predicted one. In conclusion, the longevity of resin coated CRFs could be predicted more quickly and precisely by use of the higher temperature short-term leaching method than that of the traditional differential release rate. The longevity of resin coated CRF could be rapidly and precisely predicted in a few hours by application of the higher temperature shortterm leaching method.展开更多
The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) ...The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) (LongT0 with a N:P2Os:K2O ratio of 14:12:14) applied 23 d after transplanting was investigated using rooting boxes in the greenhouse. The results at 26 and 40 d after stick fertilizer treatment showed that the use of the stick fertilizer greatly increased the production of many new fine roots from the tomato plants. Compared to the unfertilized control, root length and root length density in the stick fertilizer treatment increased by 3.6-6.7 fold. In the soil zones near the stick fertilizer, root weight and root mass density were also significantly higher for the stick fertilizer treatment. Additionally, the use of the stick fertilizer increased the N, P and K concentrations in the leaves and stems of the tomato plants. The new fine roots growing near the stick fertilizer not only absorbed more nutrients and translocated them to the shoots, but also contained more nutrients within themselves. The soil ammonium and nitrate N data showed that N released from the stick fertilizer played a major role in inducing the production of new fine roots. These results indicated that stick fertilizer could be used as an alternative to the co-situs application technique to change and control the root distribution of crops as well as to increase the potential capacity of roots for water and nutrient absorption.展开更多
In order to improve the yield and fertilizer utilization of the ricecrayfish rotation and direct seeding rice Nongxiang 32,the effects of different soil preparation and fertilizer application methods on the growth,yie...In order to improve the yield and fertilizer utilization of the ricecrayfish rotation and direct seeding rice Nongxiang 32,the effects of different soil preparation and fertilizer application methods on the growth,yield and fertilizer utilization of the variety were studied.The results showed that,under the rice-crayfish rotation and direct seeding farming mode,the contributions of seed setting rate,1000-grain weight,yield,and fertilizer contribution rate to yield of Nongxiang 32 in the treatments with rotary tillage with base fertilizer,rotary tillage without base fertilizer and no-tillage with base fertilizer were relatively higher than those in the treatments with rotary tillage without fertilizer,no-tillage without fertilizer and no-tillage without base fertilizer,and there were no significant differences between the three treatments.Rotary tillage with base fertilizer and rotary tillage without base fertilizer significantly increased the total number of stems and tillers,total number of ears,and number of effective ears.Rotary tillage and application of base fertilizer also significantly increased the number of tillers,plant weight and weed suppression ability in the early stage of rice growth.Therefore,in the different soil preparation and fertilizer application methods,the application of base fertilizer with rotary tillage was the best,followed by rotary tillage without base fertilizer and no-tillage with base fertilizer.展开更多
Background: The prevalence of contraceptive use has increased worldwide due to the development and introduction of modern contraceptives and the establishment of organized family planning programs. In Nigeria, there i...Background: The prevalence of contraceptive use has increased worldwide due to the development and introduction of modern contraceptives and the establishment of organized family planning programs. In Nigeria, there is a very slow rise in contraceptive use prevalence, resulting in high fertility rate. Generally contraceptive is either used for birth spacing, or for the purpose of terminal fertility control to limit the number of children, and the choice of method for this purpose varies. Aims and Objectives: To determine the contraceptive methods of choice among clients seeking terminal fertility control, and their reasons for the choice of such methods. Materials and Methods: A cross-sectional study of clients attending the family planning clinic of Ladoke Akintola University of Technology Teaching hospital over a period of twenty-four months, between July, 2009 and June, 2011. All clients who had completed their family, and wanted a contraceptive method to limit their family size filled the semi-structured questionnaire after giving their informed consent. Clients’ own reasons for the choice of the particular contraceptive method were grouped, entered into SPSS work sheet, and analyzed using SPSS version 17. Result: There were five hundred and ninety-two new contraceptive method acceptors during the study period, of which 264 (44.6%) were for terminal fertility control. Progestogen-only injectable contraceptive was the method of choice for terminal fertility control by 145 (54.9%) of the clients, while 85 (32.2%) made intrauterine contraceptive device (copper-T) their method of choice, and the least chosen method was female surgical sterilization (2, 0.8%). Ease of administration, satisfaction with previous use, long duration of action, and husband’s preference were the reasons for the choice of the methods. Conclusion: There is awareness of terminal fertility control in Nigeria, especially in the southwestern region of the country, and this may be responsible for the decreasing prevalence of grandmultiparity in the region. However, reversible contraceptive method is the preferred option for this purpose.展开更多
基金supported by grants from the National Key Research and Development Program of China(2021YFD1900700 and 2018YFD0200401)the China Agricultural Research System(CARS-3)the Science and Technology Research Program of Shaanxi Province,China(2022PT-06)。
文摘The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.
文摘An experiment was carried out for two consecutive growing seasons (2012 and 2013) at the Research Site of the Lower Niger River Basin Development Authority, Ejiba, Nigeria, to examine the response of sorghum to tillage methods and foliar fertilizer (Boost ExtraTM) application. A split plot experiment was laid out in a Randomized Complete Block Design (RCBD) with three replicates to randomize the tillage methods (main plots) and foliar fertilizer application (sub-plots), respectively. The experiment comprised of three tillage methods: No Tillage (NT), Manual Tillage (MT) and convectional tillage (Ploughing, Harrowing and Ridging, PHR) and three foliar fertilizer rates: 0, 2 and 4 liters of foliar fertilizer per hectare. The parameters taken on soil physical properties and weed characters are soil moisture content (%), soil temperature (℃), weed species and weed dry weight (g). Growth and yield parameters taken are: average plant height (cm), stem girth (cm), leaf area (m2), days to 50% flowering, root dry weight (g), shoot dry weight (g), weight of 1000 seeds and grain yield per land area. Weeds were identified and harvested, and their dry weights were taken and recorded. Data were also collected from ten randomly selected plants in each plot. The data were statistically analyzed using GENSTAT. The analysis of variance (ANOVA) was carried out to find out the significance of variation among the treatments while the significant differences between mean treatments were separated using Duncan’s Multiple Range Test (DMRT) at 5% level of probability. The results obtained from this study indicated that tillage methods and foliar fertilizer application significantly affected growth and yield parameters of sorghum, consequently the yield per unit area. The results also indicated that “Manually Tilled” seedbed (MT) improved soil physical properties better than either plots with PHR or No Till plots in the study area. Foliar fertilizer application at 2 l/ha performed best in terms of growth and yield. It is therefore recommended that manual tillage should be used as a method of seedbed preparation for sorghum production. However, better and stable grain yield of sorghum could be obtained with the practice of manual tillage (MT) in combination with foliar fertilization at rate of 2 litres/ha. It is recommended that different tillage methods should be combined with foliar fertilizer application for higher grain yield in the study area.
文摘“High nutrient, low chlorophyll (HNLC)” regions were created by locking iron into sedimentary iron sulfides with hydrogen sulfide available from volcanic eruptions in surrounding oceans. Appropriate locations and deployment methods for the iron fertilization were far from volcanoes, earthquakes and boundaries of tectonic plates to reduce the chance of iron-locking by volcanic sulfur compounds. The appropriate locations for the large-scale iron fertilization are proposed as Shag Rocks in South Georgia and the Bransfield Strait in Drake Passage in the Southern Ocean due to their high momentum flux causing efficient iron deployment. The iron (Fe) replete compounds, consisting of natural clay, volcanic ash, agar, N</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">-fixing mucilaginous cyanobacteria, carbon black, biodegradable plastic foamed polylactic acid, fine wood chip, and iron-reducing marine bacterium, are deployed in the ocean to stay within a surface depth of 100</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-size:12px;font-family:Verdana;"><span style="font-size:12px;font-family:Verdana;"><span style="font-family:Verdana;font-size:12px;">m for phytoplankton digestion. The deployment method of Fe-replete composite with a duration of at least several years for the successful iron fertilization, is configured to be on the streamline of the Antarctic Circumpolar Current (ACC). This will result in high momentum flux for its efficient dispersion on the ocean surface where diatom, copepods, krill and humpback whale stay together (~100</span></span></span><span><span><span style="font-family:""> </span></span></span><span><span><span style="font-family:""><span style="font-size:12px;font-family:Verdana;">m). Humpback whales are proposed as a biomarker for the successful iron fertilization in large-scale since humpback whales feed on krill, which in turn feed on cockpods and diatoms. The successful large-scale iron fertilization may be indicated by the return of the humpback whales if they could not be found for a long period before the iron fertilization. On-line monitoring for the successful iron fertilization focuses on the simultaneous changes of the following two groups;the increase concentration group (chlorophyll, O</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved Oxygen (DO), Di Methyl Sulfide (DMS)) and the decrease concentration group (nitrate, phosphate, silicate, CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">, Dissolved CO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;"> (DCO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-size:12px;font-family:Verdana;">)). The monitoring of chlorophyll-</span><i><span style="font-size:12px;font-family:Verdana;">a</span></i><span style="font-size:12px;font-family:Verdana;">, nitrate phosphate, and silicate concentrations after deploying the Fe-replete complex is carried out throughout the day and night for the accurate measurement of algal blooms.
基金Supported by Key Project of National Scientific and Technological Support Plan (2006BAD02A07)Key Grant Scientific and Technolog-ical Project of Henan Province (0522010100)Scientific Research Foundation for Doctor of Henan Agricultural University (30200240)~~
文摘[ Objective] The experiment aimed to provide a theoretical base of optimal cultivation management for the high yield and good quality and high efficiency of winter wheat. [ Method] The effects of two sulfur fertilizer application methods on dynamic changes of grain protein content and glutenin content of Yumai 49 and Yumai 66 during wheat grain filling stage were studied under the field conditions. [Result] Both the grain protein and glutenin content of two cultivars were increased by sulfur fertilizer, particularly, the effects on Yumai 49 were more significant.[ Conclusion] The grain content and glutenin content of different wheat cultivars could be increased by taking different sulfur fertilizer application methods.
基金Project supported by the National Natural Science Foundation of China (Nos. 30230230 and 30370288)the NationalKey Laboratory for Soil Erosion and Dryland Farming on the Loess Plateau (No. 10501-116).
文摘A soil column method was used to compare the effect of drip fertigation (the application of fertilizer through drip irrigation systems, DFI) on the leaching loss and transformation of urea-N in soil with that of surface fertilization combined with flood irrigation (SFI), and to study the leaching loss and transformation of three kinds of nitrogen fertilizers (nitrate fertilizer, ammonium fertilizer, and urea fertilizer) in two contrasting soils after the fertigation. In comparison to SFI, DFI decreased leaching loss of urea-N from the soil and increased the mineral N (NH4+-N + NO3- -N) in the soil. The N leached from a clay loam soil ranged from 5.7% to 9.6% of the total N added as fertilizer, whereas for a sandy loam soil they ranged between 16.2% and 30.4%. Leaching losses of mineral N were higher when nitrate fertilizer was used compared to urea or ammonium fertilizer. Compared to the control (without urea addition), on the first day when soils were fertigated with urea, there were increases in NH4+-N in the soils. This confirmed the rapid hydrolysis of urea in soil during fertigation. NH4+-N in soils reached a peak about 5 days after fertigation, and due to nitrification it began to decrease at day 10. After applying NH4+-N fertilizer and urea and during the incubation period, the mineral nitrogen in the soil decreased. This may be related to the occurrence of NH4+-N fixation or volatilization in the soil during the fertigation process.
基金the National Key Technologies R&D Program during the 11th Five-Year Plan period of China (2006BAD10B02)the National Natural Science Foundation of China (39870433,30270769)
文摘The study discussed the rapid method to test and predict the longevity of controlled release fertilizers (CRFs) coated by water soluble resin by using the short-term leaching under higher temperature. Pure water dissolving incubation and higher temperature leaching were used to study the patterns of the nutrient release of the CRFs. The correlation analysis between the days at 25℃ and the hours at 80℃ of Trincote 1 and Trincote 2 for the same cumulative release rates were conducted. Patterns of cumulative nutrient release curve followed one factor quadratic regression equation at each given temperatures, and each of relative coefficient was bigger than 0.995. As the temperature increased, nutrients release of the CRFs increased. The longevity of resin coated CRFs were predicted by use of both the cumulative nutrients release equation at 80℃ and the regression equation of release time needed for the same cumulative release rates between 25 and 80℃. There were only 0.3-6.9% relative errors between the tested longevity and predicted one. In conclusion, the longevity of resin coated CRFs could be predicted more quickly and precisely by use of the higher temperature short-term leaching method than that of the traditional differential release rate. The longevity of resin coated CRF could be rapidly and precisely predicted in a few hours by application of the higher temperature shortterm leaching method.
基金Project supported by the National Natural Science Foundation of China (Nos. 30230230, 40471069, and 30070429).
文摘The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) (LongT0 with a N:P2Os:K2O ratio of 14:12:14) applied 23 d after transplanting was investigated using rooting boxes in the greenhouse. The results at 26 and 40 d after stick fertilizer treatment showed that the use of the stick fertilizer greatly increased the production of many new fine roots from the tomato plants. Compared to the unfertilized control, root length and root length density in the stick fertilizer treatment increased by 3.6-6.7 fold. In the soil zones near the stick fertilizer, root weight and root mass density were also significantly higher for the stick fertilizer treatment. Additionally, the use of the stick fertilizer increased the N, P and K concentrations in the leaves and stems of the tomato plants. The new fine roots growing near the stick fertilizer not only absorbed more nutrients and translocated them to the shoots, but also contained more nutrients within themselves. The soil ammonium and nitrate N data showed that N released from the stick fertilizer played a major role in inducing the production of new fine roots. These results indicated that stick fertilizer could be used as an alternative to the co-situs application technique to change and control the root distribution of crops as well as to increase the potential capacity of roots for water and nutrient absorption.
文摘In order to improve the yield and fertilizer utilization of the ricecrayfish rotation and direct seeding rice Nongxiang 32,the effects of different soil preparation and fertilizer application methods on the growth,yield and fertilizer utilization of the variety were studied.The results showed that,under the rice-crayfish rotation and direct seeding farming mode,the contributions of seed setting rate,1000-grain weight,yield,and fertilizer contribution rate to yield of Nongxiang 32 in the treatments with rotary tillage with base fertilizer,rotary tillage without base fertilizer and no-tillage with base fertilizer were relatively higher than those in the treatments with rotary tillage without fertilizer,no-tillage without fertilizer and no-tillage without base fertilizer,and there were no significant differences between the three treatments.Rotary tillage with base fertilizer and rotary tillage without base fertilizer significantly increased the total number of stems and tillers,total number of ears,and number of effective ears.Rotary tillage and application of base fertilizer also significantly increased the number of tillers,plant weight and weed suppression ability in the early stage of rice growth.Therefore,in the different soil preparation and fertilizer application methods,the application of base fertilizer with rotary tillage was the best,followed by rotary tillage without base fertilizer and no-tillage with base fertilizer.
文摘Background: The prevalence of contraceptive use has increased worldwide due to the development and introduction of modern contraceptives and the establishment of organized family planning programs. In Nigeria, there is a very slow rise in contraceptive use prevalence, resulting in high fertility rate. Generally contraceptive is either used for birth spacing, or for the purpose of terminal fertility control to limit the number of children, and the choice of method for this purpose varies. Aims and Objectives: To determine the contraceptive methods of choice among clients seeking terminal fertility control, and their reasons for the choice of such methods. Materials and Methods: A cross-sectional study of clients attending the family planning clinic of Ladoke Akintola University of Technology Teaching hospital over a period of twenty-four months, between July, 2009 and June, 2011. All clients who had completed their family, and wanted a contraceptive method to limit their family size filled the semi-structured questionnaire after giving their informed consent. Clients’ own reasons for the choice of the particular contraceptive method were grouped, entered into SPSS work sheet, and analyzed using SPSS version 17. Result: There were five hundred and ninety-two new contraceptive method acceptors during the study period, of which 264 (44.6%) were for terminal fertility control. Progestogen-only injectable contraceptive was the method of choice for terminal fertility control by 145 (54.9%) of the clients, while 85 (32.2%) made intrauterine contraceptive device (copper-T) their method of choice, and the least chosen method was female surgical sterilization (2, 0.8%). Ease of administration, satisfaction with previous use, long duration of action, and husband’s preference were the reasons for the choice of the methods. Conclusion: There is awareness of terminal fertility control in Nigeria, especially in the southwestern region of the country, and this may be responsible for the decreasing prevalence of grandmultiparity in the region. However, reversible contraceptive method is the preferred option for this purpose.