期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Mixing matrix estimation of underdetermined blind source separation based on the linear aggregation characteristic of observation signals
1
作者 温江涛 Zhao Qianyun Sun Jiedi 《High Technology Letters》 EI CAS 2016年第1期82-89,共8页
Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed b... Under the underdetermined blind sources separation(UBSS) circumstance,it is difficult to estimate the mixing matrix with high-precision because of unknown sparsity of signals.The mixing matrix estimation is proposed based on linear aggregation degree of signal scatter plot without knowing sparsity,and the linear aggregation degree evaluation of observed signals is presented which obeys generalized Gaussian distribution(GGD).Both the GGD shape parameter and the signals' correlation features affect the observation signals sparsity and further affected the directionality of time-frequency scatter plot.So a new mixing matrix estimation method is proposed for different sparsity degrees,which especially focuses on unclear directionality of scatter plot and weak linear aggregation degree.Firstly,the direction of coefficient scatter plot by time-frequency transform is improved and then the single source coefficients in the case of weak linear clustering is processed finally the improved K-means clustering is applied to achieve the estimation of mixing matrix.The proposed algorithm reduces the requirements of signals sparsity and independence,and the mixing matrix can be estimated with high accuracy.The simulation results show the feasibility and effectiveness of the algorithm. 展开更多
关键词 underdetermined blind source separation (UBSS) sparse component analysis(SCA) mixing matrix estimation generalized Gaussian distribution (GGD) linear aggregation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部