Mass microalgal culture plays an irreplaceable role in aquaculture,but microalgal productivity is restricted by traditional autotrophic culture conditions.In the present study,a Tetraselmis chuii strain belonging to t...Mass microalgal culture plays an irreplaceable role in aquaculture,but microalgal productivity is restricted by traditional autotrophic culture conditions.In the present study,a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea.The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen(C:N)ratios than those under autotrophic conditions.When the C:N ratio was 16,the optical density and biomass productivity were 3.7-and 5-fold higher than their corresponding values under autotrophic culture conditions,respectively.Moreover,T.chuii synthesized more polysaccharides and total lipids under mixotrophic conditions.In addition,T.chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions.At a C:N ratio of 16,the percentage of C16:0 and C18:1 reached 30.08%and 24.65%of the total fatty acid(TFA) content,respectively.These findings may provide a basis for largescale mixotrophic culture of T.chuii,as a potential bait-microalga.展开更多
The evolution of photosynthesis is an important feature of mixotrophic plants.Previous inferences proposed that mixotrophic taxa tend to retain most genes relating to photosynthetic functions but vary in plastid gene ...The evolution of photosynthesis is an important feature of mixotrophic plants.Previous inferences proposed that mixotrophic taxa tend to retain most genes relating to photosynthetic functions but vary in plastid gene content.However,no sequence data are available to test this hypothesis in Ericaceae.To investigate changes in plastid genomes that may result from a transition from autotrophy to mixotrophy,the plastomes of two mixotrophic plants,Pyrola decorata and Chimaphila japonica,were sequenced at Illumina's Genome Analyzer and compared to the published plastome of the autotrophic plant Rhododendron simsii,which also belongs to Ericaceae.The greatest discrepancy between mixotrophic and autotrophic plants was that ndh genes for both P.decorata and C.japonica plastomes have nearly all become pseudogenes.P.decorata and C.japonica also retained all genes directly involved in photosynthesis under strong selection.The calculated rate of nonsynonymous nucleotide substitutions and synonymous substitutions of protein-coding genes(dN/dS) showed that substitution rates in shade plants were apparently higher than those in sunlight plants.The two mixotrophic plastomes were generally very similar to that of non-parasitic plants,although ndh genes were largely pseudogenized.Photosynthesis genes under strong selection were retained in the two mixotrophs,however,with greatly increased substitution rates.Further research is needed to gain a clearer understanding of the evolution of autotrophy and mixotrophy in Ericaceae.展开更多
Mixotrophic growth is one potential mode for mass culture of microalgae and cyanobacteria particularly suitable for the production of high value bioactive compounds and fine chemicals.The typical heterocystous cyanoba...Mixotrophic growth is one potential mode for mass culture of microalgae and cyanobacteria particularly suitable for the production of high value bioactive compounds and fine chemicals.The typical heterocystous cyanobacterium Anabaena sp.PCC 7120 was grown in the presence of exogenous glucose in light.Glucose improved the cell growth evidently,the maximal specific growth rate under mixotrophic condition(0.38 d 1)being 1.6-fold of that of photoautotrophic growth.Mixotrophy caused a variation in cellular pigment composition,increasing the content of chlorophyll a and decreasing the contents of carotenoid and phycobiliprotein relative to chlorophyll a.Fluorescence emission from photosystem II(PSII)relative to photosystem I was enhanced in mixotrophic cells,implying an increased energy distribution in PSII.Glucokinase(EC 2.7.1.2)activity was further induced in the presence of glucose.The mixotrophic culture was scaled up in a 15 L airlift photobioreactor equipped with an inner and an outer light source.A modified Monod model incorporating the specific growth rate and the average light intensity in the reactor was developed to describe cell growth appropriately.The understanding of mixotrophic growth and relevant physiological features of Anabaena sp.PCC 7120 would be meaningful for cultivation and exploitation of this important cyanobacterial strain.展开更多
Tetraselmis sp.-1 is a new microalgae strain constructed by cell fusion technique. In this paper, the mixotrophic cultivation of Tetraselmis sp.-1 in airlift photobioreactor is investigated. Firstly, the paper calcula...Tetraselmis sp.-1 is a new microalgae strain constructed by cell fusion technique. In this paper, the mixotrophic cultivation of Tetraselmis sp.-1 in airlift photobioreactor is investigated. Firstly, the paper calculates the light attenuation in the mixotrophic medium, and sets the light attenuation model. Secondly, it uses the same dissolved oxygen coefficient (K d) of flask culture to select the aeration of bioreactor. Finally, it sets the growth kinetic model, production (chlorophyll-a and total lipid) kinetic models and substrate (glucose) consumption kinetic model of Tetraselmis sp.-1 in airlift photobioreactor.展开更多
The genus Marinobacter is very broadly distributed in global environments and is considered as aerobic heterotroph.In this study,six Marinobacter strains were identified with autotrophic thiosulfate oxidation capacity...The genus Marinobacter is very broadly distributed in global environments and is considered as aerobic heterotroph.In this study,six Marinobacter strains were identified with autotrophic thiosulfate oxidation capacity.These strains,namely Marinobacter guineae M3B^(T),Marinobacter aromaticivorans D15-8PT,Marinobacter vulgaris F01^(T),Marinobacter profundi PWS21^(T),Marinobacter denitrificans JB02H27T,and Marinobacter sp.ST-1M(with a 99.93%similarity to the 16S rDNA sequences of Marinobacter salsuginis SD-14B^(T)),were screened out of 32 Marinobacter strains by autotrophic thiosulfate oxidization medium.The population of cells grew in a chemolithotrophic medium,increasing from 105 cells/mL to 10^(7) cells/mL within 5 d.This growth was accompanied by the consumption of thiosulfate 3.59 mmol/L to 9.64 mmol/L and the accumulation of sulfate up to 0.96 mmol/L,and occasionally produced sulfur containing complex particles.Among these Marinobacter strains,it was also found their capability of oxidizing thiosulfate to sulfate in a heterotrophic medium.Notably,M.vulgaris F01^(T)and M.antarcticus ZS2-30^(T)showed highly significant production of sulfate at 9.45 mmol/L and 3.10 mmol/L.Genome annotation indicated that these Marinobacter strains possess a complete Sox cluster for thiosulfate oxidation.Further phylogenetic analysis of the soxB gene revealed that six Marinobacter strains formed a separate lineage within Gammaproteobacteria and close to obligate chemolithoautotroph Thiomicrorhabdus arctica.The results indicated that thiosulfate oxidizing and chemolithoautotrophic potential in Marinobacter genus,which may contribute to the widespread of Marinobacter in the global ocean.展开更多
Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater a...Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands, and then cultivated in a mixotrophic medium containing ammonium and acetic acid. A molecular characterization was accomplished using ITS-PCR amplification, and phylogenetic analysis based on 16S rRNA gene Sequences. Results showed the presence of 35 bacteria, among 400 initially heterotrophic isolates, that were able to remove ammonia. These 35 isolates were classified into 10 genetically different groups based on ITS pattern. Then, a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE≥ 80%) and their phylogenetic diversity. In conditions of mixotrophy, these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies, AOE between 79% and 87%). Among these facultative mixotrophic AOB, four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium), three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas, Ochrobactrum and Bordetella).展开更多
Groundwater vanadium(V)(V(V))contamination is ubiquitous in vanadium mining/smelting region and development of novel strategy for its remediation is of particular significance.Herein woodchip-sulfur packed biological ...Groundwater vanadium(V)(V(V))contamination is ubiquitous in vanadium mining/smelting region and development of novel strategy for its remediation is of particular significance.Herein woodchip-sulfur packed biological permeable reactive barrier(bio-PRB)is established towards successful V(V)bio-detoxification.V(V)removal was accelerated under such mixotrophic condition,compared with heterotrophic and autotrophic V(V)reductions.The performance of bio-PRB was relatively steady with V(V)removal efficiency of 68.5%–98.2%under fluctuant geochemical and hydrodynamic conditions.Microbial community analysis indicated that heterotrophic Geobacter was the main reducer to convert V(V)to insoluble V(IV),by consumption of organic source attributed to woodchip hydrolysis and sulfur anabolism of autotrophs(e.g.,Sulfuricurvum and Thiobacillus).V(V)reduction and elemental sulfur oxidation were regulated by genes as omcA,omcB and mtrC and soxB,respectively.The elevated contents of cytochrome c and nicotinamide adenine dinucleotide implied that improved electron transfer facilitated V(V)reduction.This study provides a cost-effective,robust and sustainable route for V(V)-polluted aquifer remediation.展开更多
The Chlorella microalgae were mixotrophically cultivated in an unsterilized and unfikered raw foodprocessing industrial wastewater. Both inorganic carbon (CO2-air) and organic carbon (wastewater) were provided sim...The Chlorella microalgae were mixotrophically cultivated in an unsterilized and unfikered raw foodprocessing industrial wastewater. Both inorganic carbon (CO2-air) and organic carbon (wastewater) were provided simultaneously for microalgae growth. The aim of the study is to find out the utilization rates of total organic carbon (TOC) and chemical oxygen demand (COD) under mixotrophic conditions for a given waste water. About 90% reduction in TOC and COD were obtained for all dilutions of wastewater. Over 60% of nitrate and 40% of phosphate were consumed by microalgae from concentrated raw wastewater. This study shows that microalgae can use both organic and inorganic sources of carbon in more or less quantity under mixotrophic conditions. The growth of microalgae in food-processing industrial wastewater with all studied dilution factors, viz. zero (raw), 1.6 (dilution A), and 5 (dilution B) suggests that the freshwater requirement could be reduced substantially (20%-60%). The degradation kinetics also suggests that the microalgae cultivation on a high COD wastewater is feasible and scalable.展开更多
基金Supported by the National Basic Research Program of China(973Program)(Nos.2011CB200901,2011CB200904)the National Key Technology Research and Development Program(No.2011BAD14B01)+1 种基金the National High Technology Research and Development Program of China(863 Program)(No.2013AA065801)the Special Foundation for Marine Renewable Energy(No.GHME2011SW03)
文摘Mass microalgal culture plays an irreplaceable role in aquaculture,but microalgal productivity is restricted by traditional autotrophic culture conditions.In the present study,a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea.The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen(C:N)ratios than those under autotrophic conditions.When the C:N ratio was 16,the optical density and biomass productivity were 3.7-and 5-fold higher than their corresponding values under autotrophic culture conditions,respectively.Moreover,T.chuii synthesized more polysaccharides and total lipids under mixotrophic conditions.In addition,T.chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions.At a C:N ratio of 16,the percentage of C16:0 and C18:1 reached 30.08%and 24.65%of the total fatty acid(TFA) content,respectively.These findings may provide a basis for largescale mixotrophic culture of T.chuii,as a potential bait-microalga.
文摘The evolution of photosynthesis is an important feature of mixotrophic plants.Previous inferences proposed that mixotrophic taxa tend to retain most genes relating to photosynthetic functions but vary in plastid gene content.However,no sequence data are available to test this hypothesis in Ericaceae.To investigate changes in plastid genomes that may result from a transition from autotrophy to mixotrophy,the plastomes of two mixotrophic plants,Pyrola decorata and Chimaphila japonica,were sequenced at Illumina's Genome Analyzer and compared to the published plastome of the autotrophic plant Rhododendron simsii,which also belongs to Ericaceae.The greatest discrepancy between mixotrophic and autotrophic plants was that ndh genes for both P.decorata and C.japonica plastomes have nearly all become pseudogenes.P.decorata and C.japonica also retained all genes directly involved in photosynthesis under strong selection.The calculated rate of nonsynonymous nucleotide substitutions and synonymous substitutions of protein-coding genes(dN/dS) showed that substitution rates in shade plants were apparently higher than those in sunlight plants.The two mixotrophic plastomes were generally very similar to that of non-parasitic plants,although ndh genes were largely pseudogenized.Photosynthesis genes under strong selection were retained in the two mixotrophs,however,with greatly increased substitution rates.Further research is needed to gain a clearer understanding of the evolution of autotrophy and mixotrophy in Ericaceae.
基金Supported by a grant from the State Key Laboratory of Biochemical Engineering,Institute of Process Engineering,Chinese Academy of Sciences
文摘Mixotrophic growth is one potential mode for mass culture of microalgae and cyanobacteria particularly suitable for the production of high value bioactive compounds and fine chemicals.The typical heterocystous cyanobacterium Anabaena sp.PCC 7120 was grown in the presence of exogenous glucose in light.Glucose improved the cell growth evidently,the maximal specific growth rate under mixotrophic condition(0.38 d 1)being 1.6-fold of that of photoautotrophic growth.Mixotrophy caused a variation in cellular pigment composition,increasing the content of chlorophyll a and decreasing the contents of carotenoid and phycobiliprotein relative to chlorophyll a.Fluorescence emission from photosystem II(PSII)relative to photosystem I was enhanced in mixotrophic cells,implying an increased energy distribution in PSII.Glucokinase(EC 2.7.1.2)activity was further induced in the presence of glucose.The mixotrophic culture was scaled up in a 15 L airlift photobioreactor equipped with an inner and an outer light source.A modified Monod model incorporating the specific growth rate and the average light intensity in the reactor was developed to describe cell growth appropriately.The understanding of mixotrophic growth and relevant physiological features of Anabaena sp.PCC 7120 would be meaningful for cultivation and exploitation of this important cyanobacterial strain.
文摘Tetraselmis sp.-1 is a new microalgae strain constructed by cell fusion technique. In this paper, the mixotrophic cultivation of Tetraselmis sp.-1 in airlift photobioreactor is investigated. Firstly, the paper calculates the light attenuation in the mixotrophic medium, and sets the light attenuation model. Secondly, it uses the same dissolved oxygen coefficient (K d) of flask culture to select the aeration of bioreactor. Finally, it sets the growth kinetic model, production (chlorophyll-a and total lipid) kinetic models and substrate (glucose) consumption kinetic model of Tetraselmis sp.-1 in airlift photobioreactor.
基金The National Natural Science Foundation of China under contract Nos 91951201 and 42030412the National Key R&D Program of China under contract No.2021YFF0501304the Scientific Research Foundation of Third Institute of Oceanography,MNR under contract No.2019021.
文摘The genus Marinobacter is very broadly distributed in global environments and is considered as aerobic heterotroph.In this study,six Marinobacter strains were identified with autotrophic thiosulfate oxidation capacity.These strains,namely Marinobacter guineae M3B^(T),Marinobacter aromaticivorans D15-8PT,Marinobacter vulgaris F01^(T),Marinobacter profundi PWS21^(T),Marinobacter denitrificans JB02H27T,and Marinobacter sp.ST-1M(with a 99.93%similarity to the 16S rDNA sequences of Marinobacter salsuginis SD-14B^(T)),were screened out of 32 Marinobacter strains by autotrophic thiosulfate oxidization medium.The population of cells grew in a chemolithotrophic medium,increasing from 105 cells/mL to 10^(7) cells/mL within 5 d.This growth was accompanied by the consumption of thiosulfate 3.59 mmol/L to 9.64 mmol/L and the accumulation of sulfate up to 0.96 mmol/L,and occasionally produced sulfur containing complex particles.Among these Marinobacter strains,it was also found their capability of oxidizing thiosulfate to sulfate in a heterotrophic medium.Notably,M.vulgaris F01^(T)and M.antarcticus ZS2-30^(T)showed highly significant production of sulfate at 9.45 mmol/L and 3.10 mmol/L.Genome annotation indicated that these Marinobacter strains possess a complete Sox cluster for thiosulfate oxidation.Further phylogenetic analysis of the soxB gene revealed that six Marinobacter strains formed a separate lineage within Gammaproteobacteria and close to obligate chemolithoautotroph Thiomicrorhabdus arctica.The results indicated that thiosulfate oxidizing and chemolithoautotrophic potential in Marinobacter genus,which may contribute to the widespread of Marinobacter in the global ocean.
基金supported by a grant from the Tunisian Higher Education and Scientific Research Ministry
文摘Autotrophic ammonia-oxidizing bacteria (AOB) have been widely studied in constructed wetlands systems, while mixotrophic AOB have been less thoroughly examined. Heterotrophic bacteria were isolated from wastewater and rhizospheres of macrophytes of constructed wetlands, and then cultivated in a mixotrophic medium containing ammonium and acetic acid. A molecular characterization was accomplished using ITS-PCR amplification, and phylogenetic analysis based on 16S rRNA gene Sequences. Results showed the presence of 35 bacteria, among 400 initially heterotrophic isolates, that were able to remove ammonia. These 35 isolates were classified into 10 genetically different groups based on ITS pattern. Then, a collection of 10 isolates were selected because of their relatively high ammonia removal efficiencies (ARE≥ 80%) and their phylogenetic diversity. In conditions of mixotrophy, these strains were shown to be able to grow (increase of optical density OD660 during incubation with assimilation of nitrogen into cellular biomass) and to oxidize ammonia (important ammonia oxidation efficiencies, AOE between 79% and 87%). Among these facultative mixotrophic AOB, four isolates were genetically related to Firmicutes (Bacillus and Exiguobacterium), three isolates were affiliated to Actinobacteria (Arthrobacter) and three other isolates were associated with Proteobacteria (Pseudomonas, Ochrobactrum and Bordetella).
基金This work was supported by the National Natural Science Foundation of China(NSFC)(Grant No.41672237)the Beijing Natural Science Foundation(Grant No.8192040).
文摘Groundwater vanadium(V)(V(V))contamination is ubiquitous in vanadium mining/smelting region and development of novel strategy for its remediation is of particular significance.Herein woodchip-sulfur packed biological permeable reactive barrier(bio-PRB)is established towards successful V(V)bio-detoxification.V(V)removal was accelerated under such mixotrophic condition,compared with heterotrophic and autotrophic V(V)reductions.The performance of bio-PRB was relatively steady with V(V)removal efficiency of 68.5%–98.2%under fluctuant geochemical and hydrodynamic conditions.Microbial community analysis indicated that heterotrophic Geobacter was the main reducer to convert V(V)to insoluble V(IV),by consumption of organic source attributed to woodchip hydrolysis and sulfur anabolism of autotrophs(e.g.,Sulfuricurvum and Thiobacillus).V(V)reduction and elemental sulfur oxidation were regulated by genes as omcA,omcB and mtrC and soxB,respectively.The elevated contents of cytochrome c and nicotinamide adenine dinucleotide implied that improved electron transfer facilitated V(V)reduction.This study provides a cost-effective,robust and sustainable route for V(V)-polluted aquifer remediation.
文摘The Chlorella microalgae were mixotrophically cultivated in an unsterilized and unfikered raw foodprocessing industrial wastewater. Both inorganic carbon (CO2-air) and organic carbon (wastewater) were provided simultaneously for microalgae growth. The aim of the study is to find out the utilization rates of total organic carbon (TOC) and chemical oxygen demand (COD) under mixotrophic conditions for a given waste water. About 90% reduction in TOC and COD were obtained for all dilutions of wastewater. Over 60% of nitrate and 40% of phosphate were consumed by microalgae from concentrated raw wastewater. This study shows that microalgae can use both organic and inorganic sources of carbon in more or less quantity under mixotrophic conditions. The growth of microalgae in food-processing industrial wastewater with all studied dilution factors, viz. zero (raw), 1.6 (dilution A), and 5 (dilution B) suggests that the freshwater requirement could be reduced substantially (20%-60%). The degradation kinetics also suggests that the microalgae cultivation on a high COD wastewater is feasible and scalable.