Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental...Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.展开更多
MLO(Mildew Resistance Locus O)家族基因是植物特有的“感病基因”,普遍认为它对白粉病具有负调控作用。目前在单子叶和双子叶植物中发现许多抗白粉病MLO基因,但对于其上游调控因子如何调控其表达而影响白粉病发生的研究却很少。本研...MLO(Mildew Resistance Locus O)家族基因是植物特有的“感病基因”,普遍认为它对白粉病具有负调控作用。目前在单子叶和双子叶植物中发现许多抗白粉病MLO基因,但对于其上游调控因子如何调控其表达而影响白粉病发生的研究却很少。本研究中以易感白粉病的苹果砧木‘青砧1号’叶片为材料,构建其cDNA文库,文库滴度4×10^(9)cfu·mL^(-1),重组率为100%。生物信息分析苹果MdMLO家族基因启动子区共有38种顺式作用元件,包含激素、应激防御和生长发育等响应元件。以TCA和TC-rich repeats为诱饵序列构建诱饵载体,分别命名为Bait-TCA和Bait-TC。利用酵母单杂交的方法筛选其上游调控因子,结果显示Bait-TCA具有自激活现象无法筛选,Bait-TC诱饵载体调取获得30条基因序列,其中6条参与植物抗逆防御反应,推测它们可能通过与TC-rich repeats元件互作来调控MLO的表达,进而调控苹果叶片对于白粉病的响应。展开更多
基金supported by the National Key R&D Program of China(Grant No.2018YFD1000400)National Natural Science Foundation of China(Grant Nos.31860571 and 31560565)+1 种基金Major Science and Technology Projects Yunnan Province(Grant No.2016ZA005)Yunnan Youth Academic&Technical Leaders Reserve Talents Training Project(Grant No.2015HB078)。
文摘Mutants lacking wild-type MLO(Mildew resistance Locus O)proteins show broad-spectrum resistance to the powdery mildew fungus,and dysregulated cell death control,with spontaneous cell death in response to developmental or abiotic stimuli.In order to understand the evolution and divergence patterns of the MLO gene family in Rosaceae plants,we analysed systematically genome-wide data from Fragaria vesca,Prunus persica,Prunus mume,Malus domestica,Pyrus bretschneideri and Rubus occidentalis based on bioinformatics methods.Using three phylogenetic methods(the neighbour-joining,maximum likelihood,and Bayesian methods),we identified 117 MLO genes from 6 Rosaceae species.The results of all three phylogenetic analysis methods supported that these genes were divided into six clades.Conserved motif analysis found that only motif 2 was present in all MLO proteins and had 3 nearly invariant amino acid residues.The findings indicated that motif 2 might be shared by the MLO gene family.The structural features of these genes showed large variations in sequence length among different species,although the lengths and the numbers of exons exhibited high degrees of similarity.Selective pressure analysis showed extremely significant differences in all 6 clades,with 2,1,and 1 site(s)under significant positive selection detected in clades III,IV,and VI,respectively.These positive selection sites were important driving forces for the promotion of the functional differentiation of the MLO genes.Functional divergence analysis showed that the significantly divergent sites were located within the domains of the MLO genes.Functional distance analysis showed that the clade V had more conservative functions and might have retained more original functions during the evolutionary process.However,clade I may have undergone extensive altered functional constraints as a specialised functional role.Moreover,the most original function of the MLO genes in Rosaceae could be related to the evolution of their resistance to powdery mildew,which then gradually evolved into functions such as the regulation of flower development,the control of root morphology,and seed evolution due to the different evolutionary rates after gene duplication.These results provide a theoretical basis for further studies of the molecular evolutionary patterns of the plant MLO gene family.