In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the sur...In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.展开更多
The critical driving force for martensitic transformation fcc ( gamma ) yields hcp ( epsilon ) in ternary Fe-Mn-Si alloys increases with the content of Mn and decreases with that of Si. Thermodynamical prediction of ...The critical driving force for martensitic transformation fcc ( gamma ) yields hcp ( epsilon ) in ternary Fe-Mn-Si alloys increases with the content of Mn and decreases with that of Si. Thermodynamical prediction of M//s in ternary Fe-Mn-Si alloys was established. The fcc ( gamma ) yields hcp ( epsilon ) martensitic transformation in Fe-Mn-Si is a semi-thermoelastic and the nucleation process does not strongly depend on soft mode. Nucleation occurs directly through an overlapping of stacking fault rather than pole mechanism, and it is suggested that stacking fault energy (SFE) is the main factor controlling nucleation. Based on the phenomenological theory of martensite crystallography, a shuffle on (0001)//h//c//p plane is required when d//1//1//1 does not equal d//0//0//0//2. The derived principal strain in Bain distortion is smaller, i, e., more reasonable than the values given by Christian. Alloying elements strengthening the austenite, lowering SFE of gamma phase and reducing T//N** gamma temperature may be beneficial to shape memory effect of Fe-Mn-Si based alloys. Accordingly, Fe-Mn-Si-RE and Fe-Mn-Si-Cr-N (or Fe-Mn-Si-Ni-Cr-N) are worthy to be recommended as shape memory materials with improved shape memory effect. (Edited author abstract) 48 Refs.展开更多
The X-ray diffraction peak-shift method was introduced into the determination of deformation fault probability (a) of Fe-Mn-Si alloys with various Mn contents and thermomechanical cycling numbers. The precise lattice ...The X-ray diffraction peak-shift method was introduced into the determination of deformation fault probability (a) of Fe-Mn-Si alloys with various Mn contents and thermomechanical cycling numbers. The precise lattice constants required were obtained by numerical calculation instead of using standard sample without any fault. The influence of internal stress on the determined a has been evaluated, and the caused relative error was determined as about 4% and thus negligible. The results show that the deformation fault probability increases with decreasing Mn-content and increasing cycle number, which are qualitatively consistent with those results of Psf determined by peak-broadening method.展开更多
The effects of prestrain and annealing temperature on phase transformation temperatures in Fel4Mn5Si8Cr4Ni shape memory alloy have been studied. The results showed that when the annealing temperature was 673 K, both t...The effects of prestrain and annealing temperature on phase transformation temperatures in Fel4Mn5Si8Cr4Ni shape memory alloy have been studied. The results showed that when the annealing temperature was 673 K, both the At and the Ms temperatures increased appreciably as the prestrain increased, the As temperature increased slightly with increasing prestrain; the resistivity difference at 303 K between the heating and cooling curve also increased with increasing prestrain, which agreed with the recovery strain. The shape memory effect in Fe-Mn-Si-Cr-Ni shape memory alloy is caused by the stress-induced γ→ε martensite transformation and its reverse transformation. When the prestrain was 10%, the Ms temperature decreased remarkably as the annealing temperature increased.展开更多
The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles r...The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.展开更多
The work-hardening behaviour in an Fe-Mn-Si-Cr-Ni alloy has been investigated using tensile test at different temperatures and TEM observation. It was found that besides the intersection of εmartensite, the intersect...The work-hardening behaviour in an Fe-Mn-Si-Cr-Ni alloy has been investigated using tensile test at different temperatures and TEM observation. It was found that besides the intersection of εmartensite, the intersections of ε martensite with stacking fault and the cross-slip of dislocation which is difficult to occur in the alloy with low stacking fault energy are also important factors to the temperature dependent work-hardening behaviour.展开更多
The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures....The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures. sensitive to external stress. determine the configurations of stacking faults in γphase Partial dislocations at the front sides of stacking faults are usetul for the nucleation of εmartensite plates. The growth of ε martensite plates is accompanied with the disappearance of local pre-existing stacking faults, The ε martensite vanants behave in three morphologies of respective stopping. continuous penetrating and intersections with the formation of secondary ε martensite plates展开更多
The influence of quenching temperature on the shape memory effect(SME)of the Fe-Mn-Si polycrystalline alloys and their martensitic transformation temperature have been studied.The SME of the hot-rolled specimen may be...The influence of quenching temperature on the shape memory effect(SME)of the Fe-Mn-Si polycrystalline alloys and their martensitic transformation temperature have been studied.The SME of the hot-rolled specimen may be remarkably enhanced by selecting quenching temperature of 600—800℃.It has been shown that SME is influenced not only by the distribution of ε-phase morphology but also by its pre-existence.展开更多
This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2...This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2Mo particles increases the hardness and strength of the alloy as ageing goes on;ageing increases the transformation temperatures;ageing improves,the SME of the alloy so remarkably that a maximum shape recovery ratio is obtained while ageing at 600℃.展开更多
Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high M...Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high Mn content (25%) appeare better SME, especially in lower strain. SME improves evidently when Si is higher content, especially it’s range from 3% up to 4%. But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloy is weakening gradually as carbon content increases under small strain (3%). But in the condition of large strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% shows small decreasing range, especially of alloy with the addition of compound RE.展开更多
基金the National Natural Science Foundation of China(Nos.51801079,52001140)the Portugal National Funds through FCT Project(No.2021.04115).
文摘In order to increase the processability and process window of the selective laser melting(SLM)-fabricated Al−Mn−Mg−Er−Zr alloy,a novel Si-modified Al−Mn−Mg−Er−Zr alloy was designed.The effect of Si alloying on the surface quality,processability,microstructure,and mechanical properties of the SLM-fabricated alloy was studied.The results showed that introducing Si into the Al−Mn−Mg−Er−Zr alloy prevented balling and keyhole formation,refined the grain size,and reduced the solidification temperature,which eliminated cracks and increased the processability and process window of the alloy.The maximum relative density of the SLM-fabricated Si/Al−Mn−Mg−Er−Zr alloy reached 99.6%.The yield strength and ultimate tensile strength of the alloy were(371±7)MPa and(518±6)MPa,respectively.These values were higher than those of the SLM-fabricated Al−Mn−Mg−Er−Zr and other Sc-free Al−Mg-based alloys.
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020CDJDPT001)the Chongqing Natural Science Foundation,China(No.cstc2021jcyj-msxm X0699)。
文摘The critical driving force for martensitic transformation fcc ( gamma ) yields hcp ( epsilon ) in ternary Fe-Mn-Si alloys increases with the content of Mn and decreases with that of Si. Thermodynamical prediction of M//s in ternary Fe-Mn-Si alloys was established. The fcc ( gamma ) yields hcp ( epsilon ) martensitic transformation in Fe-Mn-Si is a semi-thermoelastic and the nucleation process does not strongly depend on soft mode. Nucleation occurs directly through an overlapping of stacking fault rather than pole mechanism, and it is suggested that stacking fault energy (SFE) is the main factor controlling nucleation. Based on the phenomenological theory of martensite crystallography, a shuffle on (0001)//h//c//p plane is required when d//1//1//1 does not equal d//0//0//0//2. The derived principal strain in Bain distortion is smaller, i, e., more reasonable than the values given by Christian. Alloying elements strengthening the austenite, lowering SFE of gamma phase and reducing T//N** gamma temperature may be beneficial to shape memory effect of Fe-Mn-Si based alloys. Accordingly, Fe-Mn-Si-RE and Fe-Mn-Si-Cr-N (or Fe-Mn-Si-Ni-Cr-N) are worthy to be recommended as shape memory materials with improved shape memory effect. (Edited author abstract) 48 Refs.
基金The present work was financially supported by the Advanced Materials Center Foundation of Shanghai, China (No. 99JC14019).
文摘The X-ray diffraction peak-shift method was introduced into the determination of deformation fault probability (a) of Fe-Mn-Si alloys with various Mn contents and thermomechanical cycling numbers. The precise lattice constants required were obtained by numerical calculation instead of using standard sample without any fault. The influence of internal stress on the determined a has been evaluated, and the caused relative error was determined as about 4% and thus negligible. The results show that the deformation fault probability increases with decreasing Mn-content and increasing cycle number, which are qualitatively consistent with those results of Psf determined by peak-broadening method.
文摘The effects of prestrain and annealing temperature on phase transformation temperatures in Fel4Mn5Si8Cr4Ni shape memory alloy have been studied. The results showed that when the annealing temperature was 673 K, both the At and the Ms temperatures increased appreciably as the prestrain increased, the As temperature increased slightly with increasing prestrain; the resistivity difference at 303 K between the heating and cooling curve also increased with increasing prestrain, which agreed with the recovery strain. The shape memory effect in Fe-Mn-Si-Cr-Ni shape memory alloy is caused by the stress-induced γ→ε martensite transformation and its reverse transformation. When the prestrain was 10%, the Ms temperature decreased remarkably as the annealing temperature increased.
文摘The effects of aging temperature on shape memory effect, mechanical properties and microstruc-ture of Fe-14Mn-5Si-8Cr-4Ni-0.2C shape memory alloy have been studied. The results showed that the second phase particles rich in chromium, manganese and silicon precipitate during aging, and thereby increase the hardness and strength of the alloy. The shape recovery ratio can be remarkably improved by aging and a maximum value can be obtained at 1223 K, which is 68% higher than that of the specimen in solid solution state. When the aging temperature is below 1223 K, the amount of second phase particles increases as the aging temperature increases. The size of austenite grain increases with increasing aging temperature. When the temperature is over 1223 K, the second phase particles can not precipitate. The lack of second phase particles and the increase of grain size make the hardness and shape recovery ratio drastically decrease, when the temperature is over 1223 K.
文摘The work-hardening behaviour in an Fe-Mn-Si-Cr-Ni alloy has been investigated using tensile test at different temperatures and TEM observation. It was found that besides the intersection of εmartensite, the intersections of ε martensite with stacking fault and the cross-slip of dislocation which is difficult to occur in the alloy with low stacking fault energy are also important factors to the temperature dependent work-hardening behaviour.
文摘The configurations of stacking faults and morphologies of strain induced ε martensite plates in an FeMnSiCrNi alloy were investigated through electron microscopy analysis. The Shockley partial dislocation structures. sensitive to external stress. determine the configurations of stacking faults in γphase Partial dislocations at the front sides of stacking faults are usetul for the nucleation of εmartensite plates. The growth of ε martensite plates is accompanied with the disappearance of local pre-existing stacking faults, The ε martensite vanants behave in three morphologies of respective stopping. continuous penetrating and intersections with the formation of secondary ε martensite plates
文摘The influence of quenching temperature on the shape memory effect(SME)of the Fe-Mn-Si polycrystalline alloys and their martensitic transformation temperature have been studied.The SME of the hot-rolled specimen may be remarkably enhanced by selecting quenching temperature of 600—800℃.It has been shown that SME is influenced not only by the distribution of ε-phase morphology but also by its pre-existence.
文摘This paper discusses the effect of ageing on the thermally induced martensitic transformation and its reverse transformation and shape memory effect of Fe-24Mn-5Si-8Co-4Mo shape memory alloy:the precipitation of Fe 2Mo particles increases the hardness and strength of the alloy as ageing goes on;ageing increases the transformation temperatures;ageing improves,the SME of the alloy so remarkably that a maximum shape recovery ratio is obtained while ageing at 600℃.
文摘Effect of chemical component on shape memory effect (SME) of Fe-Mn-Si-Ni-C-RE shape memory alloys was studied by bent measurement, thermal cycle training, SEM etc. Results of study indicate that the alloys with high Mn content (25%) appeare better SME, especially in lower strain. SME improves evidently when Si is higher content, especially it’s range from 3% up to 4%. But brittleness of Fe-Mn-Si-Ni-C-RE alloy increases by increasing the Si content. SME of the alloy is weakening gradually as carbon content increases under small strain (3%). But in the condition of large strain (above 6%), SME of the alloy whose carbon content ranges from 0.1 % to 0.12% shows small decreasing range, especially of alloy with the addition of compound RE.