Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size ...Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size and lattice constant of the Ni-Fe alloy coatings were studied by X-ray diffraction technique. The chemical composition and surface morphology of the FCC Ni-Fe alloy coatings were investigated with the energy dispersive X-ray spectroscopy(EDS) and atomic force microscopy(AFM). The results show that the Fe content of the Ni-Fe alloy coatings has a great influence on the preferred orientation, grain size, lattice constant and lattice strain. FCC Ni-Fe alloy coatings exhibit preferred orientations of(200) or(200)(111). With an increase of Fe content, the preferred growth orientation of(200) plane is weakened gradually, while the preferred growth orientation of(111) increases. An increase of the Fe content in the range of 1.3%-25%(mass fraction) results in a significant grain refinement of the coatings. Increasing the Fe content beyond 25% does not decrease the grain size of FCC Ni-Fe alloys further. The lattice strain increases with increasing the Fe content in the FCC Ni-Fe alloys. Since the alloys with Fe content not less than 25% has similar grain size(~11 nm), the increase in the lattice strain with the increase of Fe content cannot be attributed to the change in the grain size.展开更多
The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy developme...The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources.Here,we report LiMn_(2)O_(4)integrated with coating and doping by Sn self-segregation.Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn_(2)O_(4),with a small Sn doping in the bulk phase.The integration strategy can not only mitigate the Jahn–Teller distortion but also effectively avoid the dissolution of manganese.The as-obtained product demonstrates superior high initial capacities of 124 mAh·g^(-1)and 120 mAh·g^(-1)with the capacity retention of 91.1%and 90.2%at 25℃and55℃after 50 cycles,respectively.This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries.展开更多
LiF-coated LiMn2O4 samples were prepared via a chemical method. X-ray diffraction(XRD) patterns show that the bare LiMn2O4 and the LiF-coated LiMn2O4 samples are all spinel structure in Fd 3mspace group. The apparent ...LiF-coated LiMn2O4 samples were prepared via a chemical method. X-ray diffraction(XRD) patterns show that the bare LiMn2O4 and the LiF-coated LiMn2O4 samples are all spinel structure in Fd 3mspace group. The apparent morphologies,the spectroscopic properties and the LiF distributions of the as-prepared samples were studied by scanning electronic microscopy(SEM),Fourier infrared spectroscopy(FTIR),transmission electronic microscopy(TEM),selected area electron diffractometry(SAED) respectively. The LiF-coated LiMn2O4 gets a more stable surface than bare LiMn2O4,and changes the interaction between the cathode material and the electrolyte. Therefore,it can endure overcharge in the secondary lithium batteries,and achieve better electrochemical performances even when charged to 4.7 V and 4.9 V.展开更多
A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. ...A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. High temperature oxidation resistance of four types of atmospheric plasma sprayed TBCs was investigated. These coatings were oxidized at 1000 °C for 24, 48 and 120 h in a normal electric furnace under air atmosphere. Microstructural characterization showed that the growth of the TGO layer in nano NiCrAlY/YSZ/nano Al2O3 coating is much lower than in other coatings. Moreover, EDS and XRD analyses revealed the formation of Ni(Cr,Al)2O4 mixed oxides (as spinel) and NiO onto the Al2O3 (TGO) layer. The formation of detrimental mixed oxides (spinels) on the Al2O3 (TGO) layer of nano NiCrAlY/YSZ/nano Al2O3 coating is much lower compared to that of other coatings after 120 h of high temperature oxidation at 1000 °C.展开更多
Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and ...Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and charge-discharge test in this paper. The results show that a good clad coated on parent material can be synthesized by the sol-gel method, and the materials with modification have perfect spinel structure. LiCo0.09Mn1.91O3.92F0.08 materials coated by LiCoO2 improve the stability of crystal structure and decrease the dissolution of Mn into electrolyte. With the LiCoO2 content increasing, the specific capacity and cycle performance of samples are improved. The capacity loss is also suppressed distinctly even at 55 ℃.展开更多
基金Project(51021063)supported by the National Natural Science Fund for Innovation Group of ChinaProject(2012M521540)supported by China Post Doctoral Science Foundation+1 种基金Project(2013RS4027)supported by the Post Doctoral Scientific Foundation of Hunan Province,ChinaProject(CSUZC2013023)supported by the Precious Apparatus Open Share Foundation of Central South University,China
文摘Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size and lattice constant of the Ni-Fe alloy coatings were studied by X-ray diffraction technique. The chemical composition and surface morphology of the FCC Ni-Fe alloy coatings were investigated with the energy dispersive X-ray spectroscopy(EDS) and atomic force microscopy(AFM). The results show that the Fe content of the Ni-Fe alloy coatings has a great influence on the preferred orientation, grain size, lattice constant and lattice strain. FCC Ni-Fe alloy coatings exhibit preferred orientations of(200) or(200)(111). With an increase of Fe content, the preferred growth orientation of(200) plane is weakened gradually, while the preferred growth orientation of(111) increases. An increase of the Fe content in the range of 1.3%-25%(mass fraction) results in a significant grain refinement of the coatings. Increasing the Fe content beyond 25% does not decrease the grain size of FCC Ni-Fe alloys further. The lattice strain increases with increasing the Fe content in the FCC Ni-Fe alloys. Since the alloys with Fe content not less than 25% has similar grain size(~11 nm), the increase in the lattice strain with the increase of Fe content cannot be attributed to the change in the grain size.
基金supported by the International Science&Technology Cooperation of China(No.2019YFE0100200)the National Natural Science Foundation of China(No.53130202)the Basic Research Program of Shanxi Province,China(No.20210302123259)。
文摘The development of high-performance and low-cost cathode materials is of great significance for the progress in lithium-ion batteries.The use of Co and even Ni is not conducive to the sustainable and healthy development of the power battery industry owing to their high cost and limited resources.Here,we report LiMn_(2)O_(4)integrated with coating and doping by Sn self-segregation.Auger electron energy spectrum and soft X-ray absorption spectrum show that the coating is Sn-rich LiMn_(2)O_(4),with a small Sn doping in the bulk phase.The integration strategy can not only mitigate the Jahn–Teller distortion but also effectively avoid the dissolution of manganese.The as-obtained product demonstrates superior high initial capacities of 124 mAh·g^(-1)and 120 mAh·g^(-1)with the capacity retention of 91.1%and 90.2%at 25℃and55℃after 50 cycles,respectively.This novel material-processing method highlights a new development direction for the progress of cathode materials for lithium-ion batteries.
基金Project (2002CB211800) supported by the National Basic Research Program of Chinaproject (000Y05-21) supported by the Excellent Young Scholar Research Fund of Beijing Institute of Technologyproject (20060542012) supported by the Teaching and Research Fund of Beijing Institute of Technology
文摘LiF-coated LiMn2O4 samples were prepared via a chemical method. X-ray diffraction(XRD) patterns show that the bare LiMn2O4 and the LiF-coated LiMn2O4 samples are all spinel structure in Fd 3mspace group. The apparent morphologies,the spectroscopic properties and the LiF distributions of the as-prepared samples were studied by scanning electronic microscopy(SEM),Fourier infrared spectroscopy(FTIR),transmission electronic microscopy(TEM),selected area electron diffractometry(SAED) respectively. The LiF-coated LiMn2O4 gets a more stable surface than bare LiMn2O4,and changes the interaction between the cathode material and the electrolyte. Therefore,it can endure overcharge in the secondary lithium batteries,and achieve better electrochemical performances even when charged to 4.7 V and 4.9 V.
基金financed by Institutional Scholarship provided by Universiti Teknologi Malaysia and the Ministry of Higher Education of Malaysiathe Ministry of Higher Education of Malaysia and Universiti Teknologi Malaysia (UTM) for providing research facilities and financial support under the grant Q.J130000.2524.02H55
文摘A thermally grown oxide (TGO) layer is formed at the interface of bond coat/top coat. The TGO growth during thermal exposure in air plays an important role in the spallation of the ceramic layer from the bond coat. High temperature oxidation resistance of four types of atmospheric plasma sprayed TBCs was investigated. These coatings were oxidized at 1000 °C for 24, 48 and 120 h in a normal electric furnace under air atmosphere. Microstructural characterization showed that the growth of the TGO layer in nano NiCrAlY/YSZ/nano Al2O3 coating is much lower than in other coatings. Moreover, EDS and XRD analyses revealed the formation of Ni(Cr,Al)2O4 mixed oxides (as spinel) and NiO onto the Al2O3 (TGO) layer. The formation of detrimental mixed oxides (spinels) on the Al2O3 (TGO) layer of nano NiCrAlY/YSZ/nano Al2O3 coating is much lower compared to that of other coatings after 120 h of high temperature oxidation at 1000 °C.
文摘Spinel LiCo0.09Mn1.91O3.92F0.08 as cathode material was modified with LiCoO2 by the sol-gel method, and the crystal structure, morphology and electrochemical performance were characterized with XRD, SEM, EDS, AAS and charge-discharge test in this paper. The results show that a good clad coated on parent material can be synthesized by the sol-gel method, and the materials with modification have perfect spinel structure. LiCo0.09Mn1.91O3.92F0.08 materials coated by LiCoO2 improve the stability of crystal structure and decrease the dissolution of Mn into electrolyte. With the LiCoO2 content increasing, the specific capacity and cycle performance of samples are improved. The capacity loss is also suppressed distinctly even at 55 ℃.