Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still...Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.展开更多
Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 sele...Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.展开更多
This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) addi...This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium.展开更多
Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The e...Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.展开更多
Three different Ti-Si oxide structuares, silica supported titania, silica coated titania and intimately mixed silicatitania, containing 10%-40% SiO2, were made by sol-gel process. The variations of microstructure para...Three different Ti-Si oxide structuares, silica supported titania, silica coated titania and intimately mixed silicatitania, containing 10%-40% SiO2, were made by sol-gel process. The variations of microstructure parameters of nanocrystalline (nc) TiO2-anatase in the three kirds of binary oxides, including in-plane spacing d, cell constants (ao, co), cell volume V, cell axial ratio co/ao and crystal grain size, were comparatively investigated by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). It is found that the microstructure parameters vary remarkably with increasing SiO2 content and annealing temperature. Different structured Ti-Si binary oxides lead to different variation tendencies of microstructure parameters. The more SiO2 the binary oxide contains, the more lattice defects of nc TiO2-anatase appear; diffusion or migration of Si cations could be an important influential factor in the variations of microstructure. The grain size of nc TiO2 in the three kinds of binary oxides not only depends on SiO2 content and annealing temperature but also on the degree of lattice microstrain and distortion of nc TiO2-anatase. Both grain size and phase transformation of nc TiO2-anatase are effectively inhibited with increasing SiO2 content.展开更多
TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was inv...TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.展开更多
This paper establishes a new model for calculation of the standard entropies of solid binary oxides as follows: S_(29)=27.07×Φ_1+1.120×Φ_2+n_1×k×Φ, -22.19 e.u (R=0.9960) We have invesigated 103 ...This paper establishes a new model for calculation of the standard entropies of solid binary oxides as follows: S_(29)=27.07×Φ_1+1.120×Φ_2+n_1×k×Φ, -22.19 e.u (R=0.9960) We have invesigated 103 binary oxides. and found good agreemenl between estimated and experimental entropies.展开更多
The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based so...The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively.展开更多
Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd...Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd/Gr‐C catalysts during the electrooxidation of formic acid was assessed.A Pd/Gr0.3C0.7(Gr oxide:C=3:7,based on the precursor mass ratio)electrocatalyst exhibited better catalytic performance than both Pd/C and Pd/Gr catalysts.The current density generated by the Pd/Gr0.3C0.7catalyst was as high as102.14mA mgPd?1,a value that is approximately3times that obtained from the Pd/C(34.40mA mgPd?1)and2.6times that of the Pd/Gr material(38.50mA mgPd?1).The anodic peak potential of the Pd/Gr0.3C0.7was120mV more negative than that of the Pd/C and70mV more negative than that of the Pd/Gr.Scanning electron microscopy images indicated that the spherical C particles accumulated on the wrinkled graphene surfaces to form C cluster/Gr hybrids having three‐dimensional nanostructures.X‐ray photoelectron spectroscopy data confirmed the interaction between the Pd metal and the binary Gr‐C support.The Pd/Gr0.3C0.7also exhibited high stability,and so is a promising candidate for the fabrication of anodes for direct formic acid fuel cells.This work demonstrates a simple and cost‐effective method for improving the performance of Pd‐based electrocatalysts,which should have potential industrial applications.展开更多
The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kine...The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams, which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.展开更多
Poly(2,5-dimethoxyaniline) (PDMA) has been synthesized by chemical oxidative polymerization technique using varying ratio (wt/wt) of binary oxidants;ferric chloride (FeCl3) and ammonium persulfate (APS). Fourier trans...Poly(2,5-dimethoxyaniline) (PDMA) has been synthesized by chemical oxidative polymerization technique using varying ratio (wt/wt) of binary oxidants;ferric chloride (FeCl3) and ammonium persulfate (APS). Fourier transform infrared (FT-IR) and ultraviolet-visible (Uv-vis) spectroscopic investigations provide the evidence of the presence of both benzenoid and quinoid ring units. The thermal analysis and structural characterization data suggests that the oxidant ratio greatly controls the molecular ordering in PDMA. Surface morphology shows the existence of both amorphous and crystalline domains wherein the crystalline domain size depends on the oxidant ratio. The dc conductivity (σdc) of PDMA is also a function of binary oxidant ratio and at FeCl3:APS (50:50), it increases by two orders of magnitude. Films of PDMA synthesized using FeCl3:APS (50:50) binary oxidant exhibits a decrease in the surface current on exposure to ammonia gas.展开更多
A new ligand, N,N-BIS (6-metyl-2-pyridinecarboxylamide-N-oxide)-1,2-ethane (L) and six lanthanide(Ⅲ) complexes (RE=La, Sm, Eu, Tb, Gd, Yb) were synthesized and characterized in detail. The results indicated that the ...A new ligand, N,N-BIS (6-metyl-2-pyridinecarboxylamide-N-oxide)-1,2-ethane (L) and six lanthanide(Ⅲ) complexes (RE=La, Sm, Eu, Tb, Gd, Yb) were synthesized and characterized in detail. The results indicated that the composition of the binary complexes was determined as [REL(H2O)(NO3)2]NO3·nH2O (n=0-2), and the Eu3+ complex had bright red fluorescence in solid state. Three complexes of Eu3+, Tb3+, and Gd3+ with 6-methylpicolinic acid N-oxide (L’) were also synthesized. The relative intensity of sensitized luminescence for Eu3+ increased in the following order: L>L’. The phosphorescence spectra of the Gd3+ complexes at 77 K were measured. The energies of excited triplet state for the ligands were 20704 cm-1 (L) and 20408 cm-1 (L’). The facts that the ligands sensitized Eu3+ strongly and the order of the emission intensity for Eu3+ complexes were explained by ΔE(T-5D). This meant that the triplet energy level of the ligand was the main factor to influence RE3+ luminescence.展开更多
A new ligand, N,N′-Bis(6-methyl-2-pyridine-N-oxide)-1,3-propane (L), and some binary lanthanide complexes (Ln=Eu^(3+), Tb^(3+)) were synthesized and characterized in detail. The composition of the binary complexes wa...A new ligand, N,N′-Bis(6-methyl-2-pyridine-N-oxide)-1,3-propane (L), and some binary lanthanide complexes (Ln=Eu^(3+), Tb^(3+)) were synthesized and characterized in detail. The composition of the binary complexes was determined as LnL(NO_3)_3. They are 1∶1 electrolytes in DMF. The complexes have strong characteristic line fluorescence emission spectra, and it is also found that TbL(NO_3)_3 complex has stronger luminescence intensity than EuL(NO_3)_3 in solid state and in methanol.展开更多
Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and cha...Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and challenging.Herein,we reveal a general strategy for fabricating hollow binary oxides heterostructures(Co_(3)O_(4)-δ-MnO_(2)and Co_(3)O_(4)–SnO_(2))utilizing Ostwald ripening.Hollow Co_(3)O_(4)-δ-MnO_(2)nano-network with the structure evolution process was systematically explored through experimental and theoretical tools,identifying the origin of hollow binary oxides due to the interfaces acting as landing sites for their growth.In addition,the structural evolution,from hollow Co_(3)O_(4)-δ-MnO_(2)to Co_(3)O_(4)-α-MnO_(2),can be observed when the time of secondary hydrothermal reaches 96 h due to the topotactic layer-to-tunnel transition process.Notably,optimized Co_(3)O_(4)-δ-MnO_(2)-48 exhibits a superior PEC degradation efficiency of 96.42%and excellent durability(20,000 min)under harsh acid conditions,attributed to the massive hollow structures'vast surface area for high intently active species.Furthermore,density functional theory simulations elucidated the Co_(3)O_(4)-δ-MnO_(2)’electron-deficient surface and high d-band center(Co_(3)O_(4)-δ-MnO_(2),-1.06;Co_(3)O_(4)-α-MnO_(2),-1.49),strengthening the interaction between the catalyst's surface and active species and prolonging the lifetime of active species ofO_(2)and 1 O_(2).This work not only demonstrates superior PEC degradation efficiency of hollow Co_(3)O_(4)-δ-MnO_(2)for practical use but also lays the cornerstone for constructing hollow binary oxides heterostructures through Ostwald ripening.展开更多
Micro/nanostructured SiOx/C composite was firstly synthesized by carbothermal reduction of silica-carbon binary xerogel.The homogeneous dispersion feature of the two components in binary xerogel contributes to effecti...Micro/nanostructured SiOx/C composite was firstly synthesized by carbothermal reduction of silica-carbon binary xerogel.The homogeneous dispersion feature of the two components in binary xerogel contributes to effectively carbothermally reduce the O/Si atomic ratio,enhancing the electrochemical activity of the SiOx component.The micron-sized SiOx/C spheres are composed of many near-spherical nanoparticles.The synthesized SiOx/C exhibits a stable and high reversible capacity of 830 m A·h·g^-1 for 100 cycles,and excellent rate-capability.The homogeneous dispersion structure of phases,the micro/nanostructure and the high electrochemical activity of SiOx component combinedly contribute the excellent electrochemical performance.展开更多
Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous...Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal.Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide,and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios.The tetracycline removal was highly pH dependent.The removal of tetracycline decreased with the increase of initial concentration,but the absolute removal quantity was more at high concentration.The presence of cations and anions such as Ca2+,Mg2+,CO32-and SO42-had no significant effect on the tetracycline removal in our experimental conditions,while SiO32-and PO43-had hindered the adsorption of tetracycline.The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface.This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions.展开更多
The design and fabrication of low-cost, high-effidency, and stable oxygen-evolving catalysts are essential for promoting the overall efficiency of water electrolysis. In this study, mesoporous Ni1-xFexOy (0 〈 x 〈 1...The design and fabrication of low-cost, high-effidency, and stable oxygen-evolving catalysts are essential for promoting the overall efficiency of water electrolysis. In this study, mesoporous Ni1-xFexOy (0 〈 x 〈 1, 1 〈y 〈 1.5) nanorods were synthesized by the facile thermal decomposition of Ni-Fe-based coordination polymers. These polymers passed their nanorod-like morphology to oxides, which served as active catalysts for oxygen evolution reaction (OER). Increasing the Fe-doping amount to 33 at.% decreased the particle size and charge-transfer resistance and increased the surface area, resulting in a reduced overpotential (-302 mV) at 10 mA/cm^2 and a reduced Tafel slope (-42 mV/dec), which were accompanied by a far improved OER activity compared with those of commercial RuO2 and IrO2 electrocatalysts. At Fe-doping concentrations higher than 33 at.%, the trend of the electrocatalytic parameters started to reverse. The shift in the dopant concentration of Fe was further reflected in the structural transformation from a NiO (〈33 at.% Fe) rock-salt structure to a biphasic NiO/NiFe204 (33 at.% Fe) heterostructure, a NiFe204 (66 at.% Fe) spinel structure, and eventually to α-fe203 (100 at.% Fe). The efficient water-oxidation activity is ascribed to the highly mesoporous one-dimensional nanostructure, large surface area, and optimal amounts of the dopant Fe. The merits of abundance in the Earth, scalable synthesis, and highly efficient electrocatalytic activity make mesoporous Ni-Fe binary oxides promising oxygen-evolving catalysts for water splitting.展开更多
基金supported by the National Natural Science Foundation of China(No.52488201)the Natural Science Basic Research Program of Shaanxi(No.2024JC-YBMS-284)+1 种基金the Key Research and Development Program of Shaanxi(No.2024GHYBXM-02)the Fundamental Research Funds for the Central Universities.
文摘Machine learning combined with density functional theory(DFT)enables rapid exploration of catalyst descriptors space such as adsorption energy,facilitating rapid and effective catalyst screening.However,there is still a lack of models for predicting adsorption energies on oxides,due to the complexity of elemental species and the ambiguous coordination environment.This work proposes an active learning workflow(LeNN)founded on local electronic transfer features(e)and the principle of coordinate rotation invariance.By accurately characterizing the electron transfer to adsorption site atoms and their surrounding geometric structures,LeNN mitigates abrupt feature changes due to different element types and clarifies coordination environments.As a result,it enables the prediction of^(*)H adsorption energy on binary oxide surfaces with a mean absolute error(MAE)below 0.18 eV.Moreover,we incorporate local coverage(θ_(l))and leverage neutral network ensemble to establish an active learning workflow,attaining a prediction MAE below 0.2 eV for 5419 multi-^(*)H adsorption structures.These findings validate the universality and capability of the proposed features in predicting^(*)H adsorption energy on binary oxide surfaces.
文摘Binary metal oxide(MnOx-A/TiO2)catalysts were prepared by adding the second metal to manganese oxides supported on titanium dioxide(TiO2),where,A indicates Fe2O3,WO3,MoO3,and Cr2O3.Their catalytic activity,N2 selectivity,and SO2 poisonous tolerance were investigated.The catalytic performance at low temperatures decreased in the following order:Mn-W/TiO2〉Mn-Fe/TiO2〉Mn-Cr/TiO2〉Mn-Mo/TiO2,whereas the N2 selectivity decreased in the order:Mn-Fe/TiO2〉Mn-W/TiO2〉Mn-Mo/TiO2〉Mn-Cr/TiO2.In the presence of 0.01%SO2 and 6%H2O,the NOx conversions in the presence of Mn-W/TiO2,Mn-Fe/TiO2,or Mn-Mo/TiO2 maintain 98.5%,95.8%and 94.2%, respectively,after 8 h at 120°C at GHSV 12600 h? 1 .As effective promoters,WO3 and Fe2O3 can increase N2 selectivity and the resistance to SO2 of MnOx/TiO2 significantly.The Fourier transform infrared(FTIR)spectra of NH3 over WO3 show the presence of Lewis acid sites.The results suggest that WO3 is the best promoter of MnOx/TiO2,and Mn-W/TiO2 is one of the most active catalysts for the low temperature selective catalytic reduction of NO with NH3.
基金supported by the projects UIDB/00481/2020 and UIDP/00481/2020-Fundação para a Ciência e a Tecnologia,DOI 10.54499/UIDB/00481/2020(https://doi.org/10.54499/UIDB/00481/2020)and DOI 10.54499/UIDP/00481/2020(https://doi.org/10.54499/UIDP/00481/2020)supported by CENTRO-01-0145-FEDER-022083-Centro Portugal Regional Operational Programme(Centro 2020),under the PORTUGAL 2020 Partnership Agreement,through the European Regional Development Fund(ERDF).This article is a result of the Innovation Pact“NGS-New Generation Storage”(C644936001-00000045)+3 种基金by“NGS”Consortium,co-financed by NextGeneration EU,through the Incentive System“Agendas para a Inovação Empresarial”(“Agendas for Business Innovation”)within the Recovery and Resilience Plan(PRR).D.P acknowledges FCT,Portugal for the financial support with reference CEECIND/04158/2017(https://doi.org/10.54499/CEECIND/04158/2017/CP1459/CT0029)funding from the SMART-ER project,funded by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement#101016888.support granted by the Recovery and Resilience Plan(PRR)and by the Next Generation EU European Funds to Universidade de Aveiro,through the Agenda for Business Innovation“NGS-Next Generation Storage”(Project no 02/C05-i01.01/2022 with the application C644936001-00000045).
文摘This study explores how the chemical interaction between magnesium hydride(MgH_(2))and the additive CrO_(3) influences the hydrogen/lithium storage characteristics of MgH_(2).We have observed that a 5 wt.%CrO_(3) additive reduces the dehydrogenation activation energy of MgH_(2) by 68 kJ/mol and lowers the required dehydrogenation temperature by 80℃.CrO_(3) added MgH_(2) was also tested as an anode in an Li ion battery,and it is possible to deliver over 90%of the total theoretical capacity(2038 mAh/g).Evidence for improved reversibility in the battery reaction is found only after the incorporation of additives with MgH_(2).In depth characterization study by X-ray diffraction(XRD)technique provides convincing evidence that the CrO_(3) additive interacts with MgH_(2) and produces Cr/MgO byproducts.Gibbs free energy analyses confirm the thermodynamic feasibility of conversion from MgH_(2)/CrO_(3) to MgO/Cr,which is well supported by the identification of Cr(0)in the powder by X ray photoelectron spectroscopy(XPS)technique.Through high resolution transmission electron microscopy(HRTEM)and energy dispersive spectroscopy(EDS)we found evidence for the presence of 5 nm size Cr nanocrystals on the surface of MgO rock salt nanoparticles.There is also convincing ground to consider that MgO rock salt accommodates Cr in the lattice.These observations support the argument that creation of active metal–metal dissolved rock salt oxide interface may be vital for improving the reactivity of MgH_(2),both for the improved storage of hydrogen and lithium.
基金Projects(51334008,51304243,51604160)supported by the National Natural Science Foundation of ChinaProject(2016zzts037)supported by the Fundamental Research Funds for the Central Universities,China
文摘Considering the different geochemical enrichment behaviors of W and Mo,Fe?Mn binary oxide(FMBO),ferric hydroxide(Fe(OH)3)and manganese dioxide(MnO2)were studied to separate W from molybdate solution,respectively.The experimental results demonstrated that Fe?Mn binary oxide(FMBO)was the most suitable adsorbent for the separation.Under a wide pH(6.9?11.3)region,more than80%W removal efficiency and less than3%Mo loss could be obtained.In addition,the Fe?Mn binary oxide adsorbent can be regenerated by treating with3mol/L NaOH,and the W adsorption efficiency was retained after five adsorption?desorption?regeneration cycles.All these indicate that the Fe?Mn binary oxides have the potential for the separation of W from molybdate solution.
基金the National Natural Science Foundation of China under grant No. 20476067 Key Project of the National Natural Science Foundation of China, No. 90306014.
文摘Three different Ti-Si oxide structuares, silica supported titania, silica coated titania and intimately mixed silicatitania, containing 10%-40% SiO2, were made by sol-gel process. The variations of microstructure parameters of nanocrystalline (nc) TiO2-anatase in the three kirds of binary oxides, including in-plane spacing d, cell constants (ao, co), cell volume V, cell axial ratio co/ao and crystal grain size, were comparatively investigated by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). It is found that the microstructure parameters vary remarkably with increasing SiO2 content and annealing temperature. Different structured Ti-Si binary oxides lead to different variation tendencies of microstructure parameters. The more SiO2 the binary oxide contains, the more lattice defects of nc TiO2-anatase appear; diffusion or migration of Si cations could be an important influential factor in the variations of microstructure. The grain size of nc TiO2 in the three kinds of binary oxides not only depends on SiO2 content and annealing temperature but also on the degree of lattice microstrain and distortion of nc TiO2-anatase. Both grain size and phase transformation of nc TiO2-anatase are effectively inhibited with increasing SiO2 content.
基金Supported by the National Natural Science Foundation of China(211031735127108721476226 and 51471076)DICP Fundamental Research Program for Clean Energy(DICPM201307)
文摘TiO_2 modified Al_2O_3 binary oxide was prepared by a wet-impregnation method and used as the support for ruthenium catalyst. The catalytic performance of Ru/TiO_2–Al_2O_3catalyst in CO_2 methanation reaction was investigated. Compared with Ru/Al_2O_3 catalyst, the Ru/TiO_2–Al_2O_3catalytic system exhibited a much higher activity in CO_2 methanation reaction. The reaction rate over Ru/TiO_2–Al_2O_3 was 0.59 mol CO_2·(g Ru)1·h-1, 3.1 times higher than that on Ru/Al_2O_3[0.19 mol CO_2·(gRu)-1·h-1]. The effect of TiO_2 content and TiO_2–Al_2O_3calcination temperature on catalytic performance was addressed. The corresponding structures of each catalyst were characterized by means of H_2-TPR, XRD, and TEM. Results indicated that the averaged particle size of the Ru on TiO_2–Al_2O_3support is 2.8 nm, smaller than that on Al_2O_3 support of 4.3 nm. Therefore, we conclude that the improved activity over Ru/TiO_2–Al_2O_3catalyst is originated from the smaller particle size of ruthenium resulting from a strong interaction between Ru and the rutile-TiO_2 support, which hindered the aggregation of Ru nanoparticles.
文摘This paper establishes a new model for calculation of the standard entropies of solid binary oxides as follows: S_(29)=27.07×Φ_1+1.120×Φ_2+n_1×k×Φ, -22.19 e.u (R=0.9960) We have invesigated 103 binary oxides. and found good agreemenl between estimated and experimental entropies.
文摘The catalyst screening tests for carbon dioxide oxidative coupling of methane (CO2-OCM) have been investigated over ternary and binary metal oxide catalysts. The catalysts are prepared by doping MgO- and CeO2-based solids with oxides from alkali (Li2O), alkaline earth (CaO), and transition metal groups (WO3 or MnO). The presence of the peroxide (O2-2) active sites on the Li2O2, revealed by Raman spectroscopy, may be the key factor in the enhanced performance of some of the Li2O/MgO catalysts. The high reducibility of the CeO2 catalyst, an important factor in the CO2-OCM catalyst activity, may be enhanced by the presence of manganese oxide species. The manganese oxide species increases oxygen mobility and oxygen vacancies in the CeO2 catalyst. Raman and Fourier Transform Infra Red (FT-IR) spectroscopies revealed the presence of lattice vibrations of metal-oxygen bondings and active sites in which the peaks corresponding to the bulk crystalline structures of Li2O, CaO, WO3 and MnO are detected. The performance of 5%MnO/15%CaO/CeO2 catalyst is the most potential among the CeO2-based catalysts, although lower than the 2%Li2O/MgO catalyst. The 2%Li2O/MgO catalyst showed the most promising C2+ hydrocarbons selectivity and yield at 98.0% and 5.7%, respectively.
基金supported by the Natural Science Foundation of Shandong Province(ZR2016BM31)the Science and Technology Foundation of Jinan City(201311035)~~
文摘Combinations of graphene(Gr)and carbon black(C)were employed as binary carbon supports to fabricate Pd‐based electrocatalysts via one‐pot co‐reduction with Pd2+.The electrocatalytic performance of the resulting Pd/Gr‐C catalysts during the electrooxidation of formic acid was assessed.A Pd/Gr0.3C0.7(Gr oxide:C=3:7,based on the precursor mass ratio)electrocatalyst exhibited better catalytic performance than both Pd/C and Pd/Gr catalysts.The current density generated by the Pd/Gr0.3C0.7catalyst was as high as102.14mA mgPd?1,a value that is approximately3times that obtained from the Pd/C(34.40mA mgPd?1)and2.6times that of the Pd/Gr material(38.50mA mgPd?1).The anodic peak potential of the Pd/Gr0.3C0.7was120mV more negative than that of the Pd/C and70mV more negative than that of the Pd/Gr.Scanning electron microscopy images indicated that the spherical C particles accumulated on the wrinkled graphene surfaces to form C cluster/Gr hybrids having three‐dimensional nanostructures.X‐ray photoelectron spectroscopy data confirmed the interaction between the Pd metal and the binary Gr‐C support.The Pd/Gr0.3C0.7also exhibited high stability,and so is a promising candidate for the fabrication of anodes for direct formic acid fuel cells.This work demonstrates a simple and cost‐effective method for improving the performance of Pd‐based electrocatalysts,which should have potential industrial applications.
基金Financial supports by the NSFC(China)under the research projects(No.50071058 and No.59725101)by the CAS(China)-CNR(Italy)under an international collaboration agreement are gratefully acknowledged.
文摘The phase diagrams of ternary systems involving two metal components and one oxidant are considered first, the limitations to their use is discussed in relation to the high temperature oxidation of binary alloys. Kinetic diagrams, which are useful to predict the conditions for the stability of the two mutually insoluble oxides as the external scale, are then calculated on the basis of thermodynamic and kinetic data concerning both the alloys and the oxides, assuming the validity of the parabolic rate law. A combination of the two types of diagrams provides a more detail information about the oxidation behavior of binary alloys. The calculation of the diffusion paths, which relate the oxidant pressure to the composition of the system in terms of the alloy components both in the alloy and in the scale during an initial stage of the reaction in the presence of the parabolic rate law, is finally developed.
文摘Poly(2,5-dimethoxyaniline) (PDMA) has been synthesized by chemical oxidative polymerization technique using varying ratio (wt/wt) of binary oxidants;ferric chloride (FeCl3) and ammonium persulfate (APS). Fourier transform infrared (FT-IR) and ultraviolet-visible (Uv-vis) spectroscopic investigations provide the evidence of the presence of both benzenoid and quinoid ring units. The thermal analysis and structural characterization data suggests that the oxidant ratio greatly controls the molecular ordering in PDMA. Surface morphology shows the existence of both amorphous and crystalline domains wherein the crystalline domain size depends on the oxidant ratio. The dc conductivity (σdc) of PDMA is also a function of binary oxidant ratio and at FeCl3:APS (50:50), it increases by two orders of magnitude. Films of PDMA synthesized using FeCl3:APS (50:50) binary oxidant exhibits a decrease in the surface current on exposure to ammonia gas.
基金Project supported by the National Natural Science Foundation of China (29571013)
文摘A new ligand, N,N-BIS (6-metyl-2-pyridinecarboxylamide-N-oxide)-1,2-ethane (L) and six lanthanide(Ⅲ) complexes (RE=La, Sm, Eu, Tb, Gd, Yb) were synthesized and characterized in detail. The results indicated that the composition of the binary complexes was determined as [REL(H2O)(NO3)2]NO3·nH2O (n=0-2), and the Eu3+ complex had bright red fluorescence in solid state. Three complexes of Eu3+, Tb3+, and Gd3+ with 6-methylpicolinic acid N-oxide (L’) were also synthesized. The relative intensity of sensitized luminescence for Eu3+ increased in the following order: L>L’. The phosphorescence spectra of the Gd3+ complexes at 77 K were measured. The energies of excited triplet state for the ligands were 20704 cm-1 (L) and 20408 cm-1 (L’). The facts that the ligands sensitized Eu3+ strongly and the order of the emission intensity for Eu3+ complexes were explained by ΔE(T-5D). This meant that the triplet energy level of the ligand was the main factor to influence RE3+ luminescence.
文摘A new ligand, N,N′-Bis(6-methyl-2-pyridine-N-oxide)-1,3-propane (L), and some binary lanthanide complexes (Ln=Eu^(3+), Tb^(3+)) were synthesized and characterized in detail. The composition of the binary complexes was determined as LnL(NO_3)_3. They are 1∶1 electrolytes in DMF. The complexes have strong characteristic line fluorescence emission spectra, and it is also found that TbL(NO_3)_3 complex has stronger luminescence intensity than EuL(NO_3)_3 in solid state and in methanol.
基金supported by the National Natural Science Foundation of China(21875026,21878031)the Program for Liaoning Excellent Talents in University(LR2014013)+4 种基金the Science and Technology Foundation of Liaoning Province(No.201602052)the Natural Science Foundation of Liaoning Province(No.20170520427)supported by Liaoning Revitalization Talents Program(XLYC1802124)sponsored by the Liaoning BaiQianWan Talents Program,the scientific research fund of the educational department of Liaoning province(J2019013)The Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Project number:2019JH3/30100034,contract number:2019010278-JH3/301).
文摘Although the Ostwald ripening approach is often utilized to manufacture single hollow metal oxide,constructing hollow binary oxide heterostructures as potent photoelectrochemical(PEC)catalysts is still obscure and challenging.Herein,we reveal a general strategy for fabricating hollow binary oxides heterostructures(Co_(3)O_(4)-δ-MnO_(2)and Co_(3)O_(4)–SnO_(2))utilizing Ostwald ripening.Hollow Co_(3)O_(4)-δ-MnO_(2)nano-network with the structure evolution process was systematically explored through experimental and theoretical tools,identifying the origin of hollow binary oxides due to the interfaces acting as landing sites for their growth.In addition,the structural evolution,from hollow Co_(3)O_(4)-δ-MnO_(2)to Co_(3)O_(4)-α-MnO_(2),can be observed when the time of secondary hydrothermal reaches 96 h due to the topotactic layer-to-tunnel transition process.Notably,optimized Co_(3)O_(4)-δ-MnO_(2)-48 exhibits a superior PEC degradation efficiency of 96.42%and excellent durability(20,000 min)under harsh acid conditions,attributed to the massive hollow structures'vast surface area for high intently active species.Furthermore,density functional theory simulations elucidated the Co_(3)O_(4)-δ-MnO_(2)’electron-deficient surface and high d-band center(Co_(3)O_(4)-δ-MnO_(2),-1.06;Co_(3)O_(4)-α-MnO_(2),-1.49),strengthening the interaction between the catalyst's surface and active species and prolonging the lifetime of active species ofO_(2)and 1 O_(2).This work not only demonstrates superior PEC degradation efficiency of hollow Co_(3)O_(4)-δ-MnO_(2)for practical use but also lays the cornerstone for constructing hollow binary oxides heterostructures through Ostwald ripening.
基金supported by the National Natural Science Foundation of China(51602313 and 51764008)Science and Technology Project of Guizhou Province(Qiankehe No.2016,7439).
文摘Micro/nanostructured SiOx/C composite was firstly synthesized by carbothermal reduction of silica-carbon binary xerogel.The homogeneous dispersion feature of the two components in binary xerogel contributes to effectively carbothermally reduce the O/Si atomic ratio,enhancing the electrochemical activity of the SiOx component.The micron-sized SiOx/C spheres are composed of many near-spherical nanoparticles.The synthesized SiOx/C exhibits a stable and high reversible capacity of 830 m A·h·g^-1 for 100 cycles,and excellent rate-capability.The homogeneous dispersion structure of phases,the micro/nanostructure and the high electrochemical activity of SiOx component combinedly contribute the excellent electrochemical performance.
基金supported by the Fund for the Creative Research Groups of China (No. 50921064)the Special Co-construction Project of Beijing Municipal Commission of Education
文摘Significant concerns have been raised over the presence of antibiotics including tetracyclines in aquatic environments.A series of FeMn binary oxide with different Fe:Mn molar ratios was synthesized by a simultaneous oxidation and coprecipitation process for TC removal.Results showed that Fe-Mn binary oxide had higher removal efficiency than that of hydrous iron oxide and hydrous manganese oxide,and that the oxide with a Fe:Mn molar ratio of 5:1 was the best in removal than other molar ratios.The tetracycline removal was highly pH dependent.The removal of tetracycline decreased with the increase of initial concentration,but the absolute removal quantity was more at high concentration.The presence of cations and anions such as Ca2+,Mg2+,CO32-and SO42-had no significant effect on the tetracycline removal in our experimental conditions,while SiO32-and PO43-had hindered the adsorption of tetracycline.The mechanism investigation found that tetracycline removal was mainly achieved by the replacement of surface hydroxyl groups by the tetracycline species and formation of surface complexes at the water/oxide interface.This primary study suggests that Fe-Mn binary oxide with a proper Fe:Mn molar ratio will be a very promising material for the removal of tetracycline from aqueous solutions.
文摘The design and fabrication of low-cost, high-effidency, and stable oxygen-evolving catalysts are essential for promoting the overall efficiency of water electrolysis. In this study, mesoporous Ni1-xFexOy (0 〈 x 〈 1, 1 〈y 〈 1.5) nanorods were synthesized by the facile thermal decomposition of Ni-Fe-based coordination polymers. These polymers passed their nanorod-like morphology to oxides, which served as active catalysts for oxygen evolution reaction (OER). Increasing the Fe-doping amount to 33 at.% decreased the particle size and charge-transfer resistance and increased the surface area, resulting in a reduced overpotential (-302 mV) at 10 mA/cm^2 and a reduced Tafel slope (-42 mV/dec), which were accompanied by a far improved OER activity compared with those of commercial RuO2 and IrO2 electrocatalysts. At Fe-doping concentrations higher than 33 at.%, the trend of the electrocatalytic parameters started to reverse. The shift in the dopant concentration of Fe was further reflected in the structural transformation from a NiO (〈33 at.% Fe) rock-salt structure to a biphasic NiO/NiFe204 (33 at.% Fe) heterostructure, a NiFe204 (66 at.% Fe) spinel structure, and eventually to α-fe203 (100 at.% Fe). The efficient water-oxidation activity is ascribed to the highly mesoporous one-dimensional nanostructure, large surface area, and optimal amounts of the dopant Fe. The merits of abundance in the Earth, scalable synthesis, and highly efficient electrocatalytic activity make mesoporous Ni-Fe binary oxides promising oxygen-evolving catalysts for water splitting.