A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressu...A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressure in a micro-quartz-tube reactor. The catalysts were characterized by X-ray diffraction (XRD), temperature program reduction (TPR) and BET surface area. Ce promoter increased surface area and Na2WO4 species dispersion, which enriched the amount of the surface species. In addition, Ce promoter increased the Na/W species reduction, but the reduction peak shifted to higher temperature. Stability test of 5wt%Ce catalyst indicated suitable performance and stability. The selectivity and yield of C^2+ hydrocarbons after 50 h operation reached 65.5% and 19.6%, respectively, at 840 ℃ over 5wt%Ce-2wt%Mn5wt%Na2WO4/SiO2 catalyst.展开更多
In this work,the influence of CO2 on the structural variation and catalytic performance of Na2WO4/Mn/Si O2 for oxidative coupling of methane to ethylene was investigated. The catalyst was prepared by impregnation meth...In this work,the influence of CO2 on the structural variation and catalytic performance of Na2WO4/Mn/Si O2 for oxidative coupling of methane to ethylene was investigated. The catalyst was prepared by impregnation method and characterized by XRD,Raman and XPS techniques. Appropriate amount of CO2 in the reactant gases enhanced the formation of surface tetrahedral Na2WO4 species and promoted the migration of O in MOx,Na,W from the catalyst bulk to surface,which were favorable for oxidative coupling of methane. When the molar ratio of CH4/O2/CO2 was 3/1/2,enriched surface tetrahedral Na2WO4 species and high surface concentration of O in MOx,Na,W were detected,and then high CH4 conversion of 33.1% and high C2H4 selectivity of 56.2% were obtained. With further increase of CO2 in the reagent gases,the content of active surface tetrahedral Na2WO4 species and surface concentration of O in MOx,Na,W decreased,while that of inactive species(Mn WO4 and Mn2O3) increased dramatically,leading to low CH4 conversion and low C2H4 selectivity. It could be speculated that Na2WO4 crystal was transformed into Mn WO4 crystal with excessive CO2 added under the reaction conditions. Pretreatment of Na2WO4/Mn/Si O2 catalyst by moderate amount of CO2 before OCM also promoted the formation of Na2WO4 species.展开更多
8wt%WO3/SiO2 metathesis (disproportionation) catalysts with different pore structures were prepared by the incipient-wetness-impregnation method. The as-synthesized catalysts were characterized by N2 adsorpfion-deso...8wt%WO3/SiO2 metathesis (disproportionation) catalysts with different pore structures were prepared by the incipient-wetness-impregnation method. The as-synthesized catalysts were characterized by N2 adsorpfion-desorption, scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (DRS) and scanning transmission electron microscopy-high-angle annular dark field (STEM HAADF). The results of STEM HAADF showed that WO3 species were not uniformly distributed on the SiO2 support. The experimental results of 8wt%WO3/SiO2 performance in ethene/decene metathesis revealed that the catalytic effect of 8wt%WO3/SiO2 catalyst and coke formation over it were closely related to the support pore structure: The 8wt%WO3/SiO2 catalyst with a more complicated pore structure showed better catalytic performance but the coke deposition rate was also faster.展开更多
A novel Ni-Co/SiO2 catalyst which exhibits high activity and excellent anti-carbon deposition property for CO2 reforming of CH4 to synthesis gas is developed.
The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and c...The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and characterized by BET, XRD, XPS, CO2-TPD and H2-TPR, respectively. The synergistic effect among BaC12, SnO2 and TiO2 compositions enhances the catalytic performance. The best C2 selectivity and ethylene yield are obtained on the catalyst with the equal molar amount of the three compositions (BaC12 : TiO2 : SnO2 molar ratio of 1 : 1 : 1). The optimal reaction conditions are as follows: 800 ℃, 44 mL.min-1 for methane, 22 mL.min-1 for oxygen and a space velocity of 5000 mL-h-1 .g-1, and the C2H4 yield over the catalyst is 20.1% with the CH4 conversion of 43.8% and C2 selectivity of 53.3%.展开更多
The micro-spheric Bi_2WO_6 was synthesized by a simple one-step hydrothermal method. Bi_2WO_6 crystals were characterized using XRD, SEM, EDS and BET techniques. Bi_2WO_6, H_2O_2 and [HMIM][BF_4] served as catalyst, o...The micro-spheric Bi_2WO_6 was synthesized by a simple one-step hydrothermal method. Bi_2WO_6 crystals were characterized using XRD, SEM, EDS and BET techniques. Bi_2WO_6, H_2O_2 and [HMIM][BF_4] served as catalyst, oxidant and extracting agent in the oxidative desulfurization system(ODS), respectively. The influence of extraction agent type, oxidant usage, catalyst dosage, temperature, sulfur compound type and other factors on the oxidative desulfurization was studied in the present work. The experimental results demonstrate that Bi_2WO_6 possesses high activity for desulfurization of dibenzothiophene(DBT) and benzothiophene(BT). The desulfurization rate of DBT and BT in model oil could reach 98.1% in 80 minutes and 96.2% in 120min at 70℃, respectively. Moreover, the desulfurization performance of catalyst for DBT hardly changed after being recycled for 10 times.展开更多
The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition beha...The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition behavior and SO2 poisoning over V2 O5-MoO3/TiO2 catalysts modified with CeO2 and SiO2 were investigated.By the means of characterization analysis,it was found that the addition of SiO2 into VMo/Ti-Ce had an impact on the interaction existed between catalyst surface atoms and NH4 HSO4.Temperatureprogrammed methods and in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments indicated that the doping of SiO2 promoted the decomposition of deposited NH4 HSO4 on VMo/Ti-Ce catalyst surface by reducing the thermal stability of NH4 HSO4 and enhancing the NH4 HSO4 reactivity with NO in low temperature.And this improvement may be the reason for the better catalytic activity than VMo/Ti-Ce in the case of NH4 HSO4 deposition.Accompanied with cerium sulfate species generated over catalyst surface,the conversion of SO2 to SO3 was inhibited in SiCe mixed catalyst.The addition of SiO2 could promote the decomposition of cerium sulfate,which may be a potential strategy to enhance the resistance of SO2 poisoning over CeO2-modifed catalysts.展开更多
文摘A series of Ce-promoted Mn-Na2WO4/SiO2 catalysts were prepared by incipient wetness impregnation method, and their catalytic performance for oxidative coupling of methane (OCM) was investigated at atmospheric pressure in a micro-quartz-tube reactor. The catalysts were characterized by X-ray diffraction (XRD), temperature program reduction (TPR) and BET surface area. Ce promoter increased surface area and Na2WO4 species dispersion, which enriched the amount of the surface species. In addition, Ce promoter increased the Na/W species reduction, but the reduction peak shifted to higher temperature. Stability test of 5wt%Ce catalyst indicated suitable performance and stability. The selectivity and yield of C^2+ hydrocarbons after 50 h operation reached 65.5% and 19.6%, respectively, at 840 ℃ over 5wt%Ce-2wt%Mn5wt%Na2WO4/SiO2 catalyst.
基金support from the Ministry of Science and Technology (Nos.2012BAC20B10)the National Natural Science Foundation of China (Nos. 21321061 and 20976109)
文摘In this work,the influence of CO2 on the structural variation and catalytic performance of Na2WO4/Mn/Si O2 for oxidative coupling of methane to ethylene was investigated. The catalyst was prepared by impregnation method and characterized by XRD,Raman and XPS techniques. Appropriate amount of CO2 in the reactant gases enhanced the formation of surface tetrahedral Na2WO4 species and promoted the migration of O in MOx,Na,W from the catalyst bulk to surface,which were favorable for oxidative coupling of methane. When the molar ratio of CH4/O2/CO2 was 3/1/2,enriched surface tetrahedral Na2WO4 species and high surface concentration of O in MOx,Na,W were detected,and then high CH4 conversion of 33.1% and high C2H4 selectivity of 56.2% were obtained. With further increase of CO2 in the reagent gases,the content of active surface tetrahedral Na2WO4 species and surface concentration of O in MOx,Na,W decreased,while that of inactive species(Mn WO4 and Mn2O3) increased dramatically,leading to low CH4 conversion and low C2H4 selectivity. It could be speculated that Na2WO4 crystal was transformed into Mn WO4 crystal with excessive CO2 added under the reaction conditions. Pretreatment of Na2WO4/Mn/Si O2 catalyst by moderate amount of CO2 before OCM also promoted the formation of Na2WO4 species.
文摘8wt%WO3/SiO2 metathesis (disproportionation) catalysts with different pore structures were prepared by the incipient-wetness-impregnation method. The as-synthesized catalysts were characterized by N2 adsorpfion-desorption, scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectroscopy (DRS) and scanning transmission electron microscopy-high-angle annular dark field (STEM HAADF). The results of STEM HAADF showed that WO3 species were not uniformly distributed on the SiO2 support. The experimental results of 8wt%WO3/SiO2 performance in ethene/decene metathesis revealed that the catalytic effect of 8wt%WO3/SiO2 catalyst and coke formation over it were closely related to the support pore structure: The 8wt%WO3/SiO2 catalyst with a more complicated pore structure showed better catalytic performance but the coke deposition rate was also faster.
基金the Zhejiang Provincial Science Foundation of China and by the Education Commission of Zhejiang Province.
文摘A novel Ni-Co/SiO2 catalyst which exhibits high activity and excellent anti-carbon deposition property for CO2 reforming of CH4 to synthesis gas is developed.
文摘The performance of BaC12-TiO2-SnO2 composite catalysts in oxidative coupling of methane reaction has been investigated. A series of BaC12-TiO2, BaC1E-SnO2, TiO2-SnO2, and BaC12-TiO2-SnO2 catalysts were prepared, and characterized by BET, XRD, XPS, CO2-TPD and H2-TPR, respectively. The synergistic effect among BaC12, SnO2 and TiO2 compositions enhances the catalytic performance. The best C2 selectivity and ethylene yield are obtained on the catalyst with the equal molar amount of the three compositions (BaC12 : TiO2 : SnO2 molar ratio of 1 : 1 : 1). The optimal reaction conditions are as follows: 800 ℃, 44 mL.min-1 for methane, 22 mL.min-1 for oxygen and a space velocity of 5000 mL-h-1 .g-1, and the C2H4 yield over the catalyst is 20.1% with the CH4 conversion of 43.8% and C2 selectivity of 53.3%.
基金financial support of the Natural Science Foundation of China (Project No. 21003069)the Doctoral Fund of Liaoning Province (201501105)
文摘The micro-spheric Bi_2WO_6 was synthesized by a simple one-step hydrothermal method. Bi_2WO_6 crystals were characterized using XRD, SEM, EDS and BET techniques. Bi_2WO_6, H_2O_2 and [HMIM][BF_4] served as catalyst, oxidant and extracting agent in the oxidative desulfurization system(ODS), respectively. The influence of extraction agent type, oxidant usage, catalyst dosage, temperature, sulfur compound type and other factors on the oxidative desulfurization was studied in the present work. The experimental results demonstrate that Bi_2WO_6 possesses high activity for desulfurization of dibenzothiophene(DBT) and benzothiophene(BT). The desulfurization rate of DBT and BT in model oil could reach 98.1% in 80 minutes and 96.2% in 120min at 70℃, respectively. Moreover, the desulfurization performance of catalyst for DBT hardly changed after being recycled for 10 times.
基金supported by the National Natural Science Foundation of China(No.51576039)
文摘The deposition of NH4 HSO4 and the poisoning effect of SO2 on SCR catalyst are the main obstacles that restrict the industrial application of CeO2-doped SCR catalysts.In this work,deposited NH4 HSO4 decomposition behavior and SO2 poisoning over V2 O5-MoO3/TiO2 catalysts modified with CeO2 and SiO2 were investigated.By the means of characterization analysis,it was found that the addition of SiO2 into VMo/Ti-Ce had an impact on the interaction existed between catalyst surface atoms and NH4 HSO4.Temperatureprogrammed methods and in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)experiments indicated that the doping of SiO2 promoted the decomposition of deposited NH4 HSO4 on VMo/Ti-Ce catalyst surface by reducing the thermal stability of NH4 HSO4 and enhancing the NH4 HSO4 reactivity with NO in low temperature.And this improvement may be the reason for the better catalytic activity than VMo/Ti-Ce in the case of NH4 HSO4 deposition.Accompanied with cerium sulfate species generated over catalyst surface,the conversion of SO2 to SO3 was inhibited in SiCe mixed catalyst.The addition of SiO2 could promote the decomposition of cerium sulfate,which may be a potential strategy to enhance the resistance of SO2 poisoning over CeO2-modifed catalysts.