In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures...In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.展开更多
The lytropic liquid crystals in dodecanic acid diethanolamine (DAD) /n-butanol (C4OH) /octane (n-C8H18) /deuteron (D2O) system were studied to determine the phase regions and were investigated by 2H-NMR spectroscopy,o...The lytropic liquid crystals in dodecanic acid diethanolamine (DAD) /n-butanol (C4OH) /octane (n-C8H18) /deuteron (D2O) system were studied to determine the phase regions and were investigated by 2H-NMR spectroscopy,optical polarizing microscope and small-angle X-ray diffraction (SAXD) methods.The results indicate that the lamellar,hexagonal and cubic liquid crystals all exist in the above system.Keeping the weight ratio of DAD and C4OH constant,the microphase Structure,2H quadruple splitting and the interlayer spacing are all changed with the addition of deuteron.展开更多
Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Sca...Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Scanning electron microscopy (SEM) investigations demonstrate that the microsphere morphology and hollow structure of precursors are inherited. The effect of hollow structure properties of as-prepared LiMn2O4 on their performance as cathode materials for lithium-ion batteries has been studied. Electrochemical performance tests show that LiMn2O4 hollow microspheres with small wall thickness exhibit both superior rate capability and better cycle performance than LiMn2O4 solid microspheres and LiMn2O4 hollow microspheres with thick wall. The LiMn2O4 hollow microspheres with thin wall have discharge capacity of 132.7 mA.h-g^-1 at C/10 (14.8 mA.g^-1) in the first cycle, 94.1% capacity retention at C/10 after 40 cycles and discharge capacity of 116.5 mAh-gq at a high rate of 5C. The apparent lithium-ion diffusion coefficient (Dapp) of as-prepared LiMn2O4 determined by capacity intermittent titration technique (CITT) varies from 10-11 to 10-8.5 cm2.s^-1 showing a regular "W" shape curve plotted with test voltages. The D app of LiMn2O4 hollow microspheres with thin wall has the largest value among all the prepared samples. Both the superior rate capability and cycle stability of LiMn2O4 hollow microspheres with thin wall can be ascribed to the facile ion diffusion in the hollow structures and the robust of hollow structures during repeated cycling.展开更多
To satisfy the upsurging demand for energy storage in modern society,anode materials which can deliver high capacity have been intensively researched for the next generation lithium ion batteries.Typically,the binary ...To satisfy the upsurging demand for energy storage in modern society,anode materials which can deliver high capacity have been intensively researched for the next generation lithium ion batteries.Typically,the binary MnCo_2O_4 with a characteristic coupled metal cations showed promising potential due to its high theoretical capacity and low cost.Here,by means of a well-designed synthesis control,we demonstrated a scalable process to achieve a hierarchical structure of MnCo_2O_4,which existed as uniform microspheres with embedded mesopores,showing favorable structural characters for high performance during a fast charge/discharge process.Our synthesis highlighted the importance of sodium salicylate as an essential additive to control the precipitation of the two involved metal cations.It was proved that a dual role was played sodium salicylate which cannot only facilitate the formation of microspheric shape,but also act as an effective precursor for the creation of inner mesopores.We confirmed that the hierarchically-structured MnCo_2O_4 showed outstanding performance when it was tested as an anode material in lithium ion batteries as revealed by its extraordinary cycling stability and high rate capability.展开更多
基金supported by the National Natural Science Foundation of China (51572194)the National Key Research and Development Program of China (2018YFB0105900)
文摘In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.
文摘The lytropic liquid crystals in dodecanic acid diethanolamine (DAD) /n-butanol (C4OH) /octane (n-C8H18) /deuteron (D2O) system were studied to determine the phase regions and were investigated by 2H-NMR spectroscopy,optical polarizing microscope and small-angle X-ray diffraction (SAXD) methods.The results indicate that the lamellar,hexagonal and cubic liquid crystals all exist in the above system.Keeping the weight ratio of DAD and C4OH constant,the microphase Structure,2H quadruple splitting and the interlayer spacing are all changed with the addition of deuteron.
基金Funded by the National Natural Science Foundation of China(Nos.20803056,11474226)the Fundamental Research Funds for the Central Universities(WUT:2015-IB-001,WUT:2016-IB-005)
文摘Spinel LiMn2O4 microspheres and hollow microspheres with adjustable wall thickness have been prepared using controllable oxidation of MnCO3 microspheres precursors and following solid reactions with lithium salts. Scanning electron microscopy (SEM) investigations demonstrate that the microsphere morphology and hollow structure of precursors are inherited. The effect of hollow structure properties of as-prepared LiMn2O4 on their performance as cathode materials for lithium-ion batteries has been studied. Electrochemical performance tests show that LiMn2O4 hollow microspheres with small wall thickness exhibit both superior rate capability and better cycle performance than LiMn2O4 solid microspheres and LiMn2O4 hollow microspheres with thick wall. The LiMn2O4 hollow microspheres with thin wall have discharge capacity of 132.7 mA.h-g^-1 at C/10 (14.8 mA.g^-1) in the first cycle, 94.1% capacity retention at C/10 after 40 cycles and discharge capacity of 116.5 mAh-gq at a high rate of 5C. The apparent lithium-ion diffusion coefficient (Dapp) of as-prepared LiMn2O4 determined by capacity intermittent titration technique (CITT) varies from 10-11 to 10-8.5 cm2.s^-1 showing a regular "W" shape curve plotted with test voltages. The D app of LiMn2O4 hollow microspheres with thin wall has the largest value among all the prepared samples. Both the superior rate capability and cycle stability of LiMn2O4 hollow microspheres with thin wall can be ascribed to the facile ion diffusion in the hollow structures and the robust of hollow structures during repeated cycling.
基金supported by the National Natural Science Foundation of China(51672282,21373238)the National Basic Research Program of China(2013CB934000)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA09010101)
文摘To satisfy the upsurging demand for energy storage in modern society,anode materials which can deliver high capacity have been intensively researched for the next generation lithium ion batteries.Typically,the binary MnCo_2O_4 with a characteristic coupled metal cations showed promising potential due to its high theoretical capacity and low cost.Here,by means of a well-designed synthesis control,we demonstrated a scalable process to achieve a hierarchical structure of MnCo_2O_4,which existed as uniform microspheres with embedded mesopores,showing favorable structural characters for high performance during a fast charge/discharge process.Our synthesis highlighted the importance of sodium salicylate as an essential additive to control the precipitation of the two involved metal cations.It was proved that a dual role was played sodium salicylate which cannot only facilitate the formation of microspheric shape,but also act as an effective precursor for the creation of inner mesopores.We confirmed that the hierarchically-structured MnCo_2O_4 showed outstanding performance when it was tested as an anode material in lithium ion batteries as revealed by its extraordinary cycling stability and high rate capability.