The Mn Fe P0.56Si0.44 compound is investigated by x-ray diffraction, magnetic measurements, and x-ray absorption fine structure spectroscopy. It crystallizes in Fe2P-type structure with the lattice parameters a = b = ...The Mn Fe P0.56Si0.44 compound is investigated by x-ray diffraction, magnetic measurements, and x-ray absorption fine structure spectroscopy. It crystallizes in Fe2P-type structure with the lattice parameters a = b = 5.9823(0) and c = 3.4551(1) and undergoes a first-order phase transition at the Curie temperature of 255 K. The Fe K edge and Mn K edge x-ray absorption fine structure spectra show that Mn atoms mainly reside at 3g sites, while 3f sites are occupied by Fe atoms. The distances between the absorbing Fe atom and the first and second nearest neighbor Fe atoms in a 3f-layer shift from 2.65 and 4.01 in the ferromagnetic state to 2.61 and 3.96 in the paramagnetic phase. On the other hand, the distance between the 3g-layer and 3f-layer changes a little as 2.66 –2.73 below the Curie temperature and2.68 –2.75 above it.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51461035,51161017,and 11404176)the Scientific Research Projects of the Higher Educational Department of Inner Mongolian Autonomous Region,China(Grant No.NJZZ14033)The XAFS measurement was performed under the approval of Photon Factory Program Advisory Committee(Proposal Nos.2012G095 and 2014G047)
文摘The Mn Fe P0.56Si0.44 compound is investigated by x-ray diffraction, magnetic measurements, and x-ray absorption fine structure spectroscopy. It crystallizes in Fe2P-type structure with the lattice parameters a = b = 5.9823(0) and c = 3.4551(1) and undergoes a first-order phase transition at the Curie temperature of 255 K. The Fe K edge and Mn K edge x-ray absorption fine structure spectra show that Mn atoms mainly reside at 3g sites, while 3f sites are occupied by Fe atoms. The distances between the absorbing Fe atom and the first and second nearest neighbor Fe atoms in a 3f-layer shift from 2.65 and 4.01 in the ferromagnetic state to 2.61 and 3.96 in the paramagnetic phase. On the other hand, the distance between the 3g-layer and 3f-layer changes a little as 2.66 –2.73 below the Curie temperature and2.68 –2.75 above it.