A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline...A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar.展开更多
Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposite...Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.展开更多
Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal o...Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.展开更多
A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(...A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ)).The characteristics of CPM showed a porous structure,well dispersed MnFe_(2) O_(4),and several of hydroxyl and amino groups(-OH,-NH_(2)).Batch experiments demonstrated that the best adsorption property of As(Ⅲ),Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ) was achieved within 8 h with maximum adsorption capacities of 9.90,9.73,43.94,and 11.98 mg/g,respectively.Competitive and synergistic effects(particularly precipitation) were included in the co-adsorption mechanism of As(Ⅲ) and heavy metals.Thereinto,As(Ⅲ) was partly oxidized by MnFe_(2) O_(4) to As(V),and both were coordinated on MnFe_(2) O_(4) nanoparticles.Pb(Ⅱ) could also bind to MnFe_(2) O_(4) by ion exchange and electrostatic attraction.Furthermore,Cd(Ⅱ) and Cu(Ⅱ) tended to be coordinated on chitosan.Therefore,CPM can serve as a remediation material for water and soil co-contaminated with As(Ⅲ) and heavy metals.展开更多
The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' ...The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' recombination rate,as well as wider and stronger visible light absorption capacity.Since the synergistic effect between g-C_(3 )N_(4) and MnFe_(2) O_(4),the photogene rated electron could transfer from g-C3 N4 to MnFe_(2) O_(4),which could promote the migration of electrons as well as enhance the photocatalytic activity and peroxymonosulfate(PMS) activation efficiency.Mn/G/D-5% composite displayed the excellent degradation performance of bisphenol A(BPA) with the removal efficiency of 99.9% under PMS/Vis system,which was approximately 2.47 and 63.8 times as high as that of the Mn/G/D-5%/PMS and Mn/G/D-5%/Vis system,respectively.Moreover,negative electricity derived from diatomite surface also promoted the photogenerated carriers' migration,and the degradation rate constant was around 2.4 times higher than that of MnFe_(2) O_(4)/g-C_(3) N_(4)(Mn/G).In addition,quenching experiments showed that both radical pathway(h^(+),·OH,·O_(2)^(-)and SO_(4)·^(-)) and non-radical pathway(^(1) O_(2)) were responsible for the degradation of BPA.展开更多
基金gratefully acknowledge the financial support for this research from the National Natural Science Foundation of China(Grant No.:21978047,21776046)the Six Talent Climax Foundation of Jiangsu(Grant No.:XCL-079).
文摘A novel photo-catalytic system composed of N-doped biochars(NBCs),MnFe_(2)O_(4) and sulfite activation under ultraviolet(NBCs/MnFe_(2)O_(4)/sulfite/UV)was constructed to realize the efficient eliminate of tetracycline(TC).As the carrier of MnFe_(2)O_(4),NBCs were synthesized from alfalfa,which has large specific surface area,graphite like structure and hierarchical porous structure.The adsorption isotherm indicated that NBCs/MnFe_(2)O_(4)-2:1 had the best adsorption performance for TC(347.56 mg g^(-1)).Through synergistic adsorption and photocatalysis,the removal rate of TC reached 84%,which was significantly higher than that of MnFe_(2)O_(4).Electrochemical impedance spectroscopy(EIS)and Photoluminescence(PL)characterization results showed that the introduction of NBCs improved the separation efficiency of photogenerated electron and hole pairs and enhanced the photocatalytic performance.Moreover,the adsorption,degradation mechanism and degradation path of TC by the catalyst were systematically analyzed by coupling HPLC–MS measurement with the theoretical calculation.Considering the advantages of excellent degradation performance,low cost,easy separation and environmental friendliness of NBCs/MnFe_(2)O_(4),this work was expected to provide a new path for the practical application of biochar.
基金Project(2108085ME184)supported by the Natural Science Foundation of Anhui Province,ChinaProject(2022AH010019)supported by the Innovation Team Project of Anhui Provincial Department of Education,China+1 种基金Project(GXXT-2021-057)supported by the Collaborative Innovation Project of Anhui Provincial Department of Education,ChinaProject(2020QDZ36)supported by the Doctoral Scientific Research Startup Foundation of Anhui Jianzhu University,China。
文摘Manganese ferrite(MnFe_(2)O_(4))has the advantages of simple preparation,high resistivity,and high crystal symmetry.Herein,we have developed an electrochemical sensor utilizing graphene and MnFe_(2)O_(4) nanocomposites modified glassy carbon electrode(GCE),which is very efficient and sensitive to detect bisphenol A(BPA).MnFe_(2)O_(4)/graphene(GR)was synthesized by immobilizing the MnFe_(2)O_(4) microspheres on the graphene nanosheets via a simple one-pot solvothermal method.The morphology and structure of the MnFe_(2)O_(4)/GR nanocomposite have been characterized through scanning electron microscopy(SEM),Fourier transform infrared spectroscopy(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS).In addition,electrochemical properties of the modified materials are comparably explored by means of cyclic voltammetry(CV),electrochemical impedance spectroscopy(EIS)and differential pulse voltammetry(DPV).Under the optimal conditions,the proposed electrochemical sensor for the detection of BPA has a linear range of 0.8-400μmol/L and a detection limit of 0.0235μmol/L(S/N=3)with high sensitivity,good selectivity and high stability.In addition,the proposed sensor was used to measure the content of BPA in real water samples with a recovery rate of 97.94%-104.56%.At present,the synthesis of MnFe_(2)O_(4)/GR provides more opportunities for the electrochemical detection of BPA in practical applications.
基金supported by the National Natural Science Foundation of China (12241502,52002367)the Fundamental Research Funds for the Central Universities (20720220010)the National Key Research and Development Program of China (2019YFA0405602)。
文摘Spinel metal oxides containing Mn,Co,or Fe(AB_(2)O_(4),A/B=Mn/Fe/Co)are one of the most promising nonPt electrocatalysts for oxygen reduction reaction(ORR)in alkaline conditions.However,the low conductivity of metal oxides and the poor intrinsic activities of transition metal sites lead to unsatisfactory ORR performance.In this study,eutectic molten salt(EMS)treatment is employed to reconstruct the atomic arrangement of MnFe_(2)O_(4)electrocatalyst as a prototype for enhancing ORR performance.Comprehensive analyses by using XAFS,soft XAS,XPS,and electrochemical methods reveal that the EMS treatment reduces the oxygen vacancies and spinel inverse in MnFe_(2)O_(4)effectively,which improves the electric conductivity and increases the population of more catalytically active Mn^(2+)sites with tetrahedral coordination.Moreover,the enhanced Mn-O interaction after EMS treatment is conducive to the adsorption and activation of O_(2),which promotes the first electron transfer step(generally considered as the ratedetermining step)of the ORR process.As a result,the EMS treated MnFe_(2)O_(4)catalyst delivers a positive shift of 40 mV in the ORR half-wave potential and a two-fold enhanced mass/specific activity.This work provides a convenient approach to manipulate the atomic architecture and local electronic structure of spinel oxides as ORR electrocatalysts and a comprehensive understanding of the structureperformance relationship from the molecular/atomic scale.
基金funded by the National Key Research and Development Project (No. 2020YFC1807700)the National Key Research and Development Project (No. 2019YFC1805900)+4 种基金the Youth Fund Project of GRINM (No. 12008)the Youth Fund Project of GRINM (No. 12119)the Open Foundation of State Key Laboratory of Mineral Processing (No. BGRIMM-KJSKL-2020-07)the Open Foundation of State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization (No. 2021P4FZG13A)the National Natural Science Foundation of China (No. 51704028)。
文摘A novel porous nanocomposite,cross-linked chitosan and polyethylene glycol(PEG) bead-supported MnFe_(2) O_(4) nanoparticles(CPM),was developed as an efficient adsorbent to remove metalloid(As(Ⅲ))and heavy metals(Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ)).The characteristics of CPM showed a porous structure,well dispersed MnFe_(2) O_(4),and several of hydroxyl and amino groups(-OH,-NH_(2)).Batch experiments demonstrated that the best adsorption property of As(Ⅲ),Cd(Ⅱ),Cu(Ⅱ),and Pb(Ⅱ) was achieved within 8 h with maximum adsorption capacities of 9.90,9.73,43.94,and 11.98 mg/g,respectively.Competitive and synergistic effects(particularly precipitation) were included in the co-adsorption mechanism of As(Ⅲ) and heavy metals.Thereinto,As(Ⅲ) was partly oxidized by MnFe_(2) O_(4) to As(V),and both were coordinated on MnFe_(2) O_(4) nanoparticles.Pb(Ⅱ) could also bind to MnFe_(2) O_(4) by ion exchange and electrostatic attraction.Furthermore,Cd(Ⅱ) and Cu(Ⅱ) tended to be coordinated on chitosan.Therefore,CPM can serve as a remediation material for water and soil co-contaminated with As(Ⅲ) and heavy metals.
基金the financial support provided by the Beijing Natural Science Foundation (2202044)the Fok Ying Tung Education Foundation, China (171042)+1 种基金the National Postdoctoral Program for Innovative Talents (BX20190370)the Fundamental Research Funds for the Central Universities (2021JCCXHH04)。
文摘The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' recombination rate,as well as wider and stronger visible light absorption capacity.Since the synergistic effect between g-C_(3 )N_(4) and MnFe_(2) O_(4),the photogene rated electron could transfer from g-C3 N4 to MnFe_(2) O_(4),which could promote the migration of electrons as well as enhance the photocatalytic activity and peroxymonosulfate(PMS) activation efficiency.Mn/G/D-5% composite displayed the excellent degradation performance of bisphenol A(BPA) with the removal efficiency of 99.9% under PMS/Vis system,which was approximately 2.47 and 63.8 times as high as that of the Mn/G/D-5%/PMS and Mn/G/D-5%/Vis system,respectively.Moreover,negative electricity derived from diatomite surface also promoted the photogenerated carriers' migration,and the degradation rate constant was around 2.4 times higher than that of MnFe_(2) O_(4)/g-C_(3) N_(4)(Mn/G).In addition,quenching experiments showed that both radical pathway(h^(+),·OH,·O_(2)^(-)and SO_(4)·^(-)) and non-radical pathway(^(1) O_(2)) were responsible for the degradation of BPA.