Oxygen reduction reaction(ORR)catalysts play a critical role in energy storage and conversion devices and have been attracted enormous interests,and however,it remains challenging to develop highly active cheap cataly...Oxygen reduction reaction(ORR)catalysts play a critical role in energy storage and conversion devices and have been attracted enormous interests,and however,it remains challenging to develop highly active cheap catalysts in a simple and green route.Inspired by the heme-copper oxidases(HOCs),in which the ORR active center is originated from the incorporation of Fe-N_(4)with copper atom,we here developed a fine manganese oxide nanosheets(MnO_(x)NSs)integrated with iron phthalocyanine(FePc)anchored on highly conductive graphene(MnO_(x)/FePc-G)through a green route only involve ethanol as the reagent.The bio-inspired catalyst MnO_(x)/Fe Pc-G demonstrated high ORR activity with a half-wave potential(E_(1/2))of 0.887 V,about 57 mV more positive than that of Pt/C.And the current density(j)at 0.9 V is about 1.9 m A cm^(-2),which is three times of Pt/C and FePc-G.More importantly,the bio-inspired systems show superior stability in comparison to commercial Pt/C,showing a potential of 0.863 V to deliver a j of 3 mA cm^(-2)after 18000 s polarization,about 80 mV higher than that of 0.783 V for Pt/C.The high activity is contributed by the integration of the Fe Pc and MnO_(x)NSs that plays the role to assist the cleavage of the O_(2)bond.Our approach provides a new evidence to develop highly efficient ORR catalysts through imitate the naturally involved systems through a simple route.展开更多
Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely li...Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely limits the overall electrocatalytic performance due to their insufficient cooperative effects.Herein,we report a controllable and robust heterointerface engineering strategy for the bottom-up fabrication of rhombic Rh nanosheets in situ confined on Ti_3C_(2)T_x MXene nanolamellas(Rh NS/MXene)via a convenient stereoassembly process.This unique design concept gives the resulting 2D/2D Rh NS/MXene heterostructure intriguing textural features,including large accessible surface areas,strong"face-toface"interfacial interactions,homogeneous Rh nanosheet distribution,ameliorative electronic structure,and high electronic conductivity.As a consequence,the as-prepared Rh NS/MXene nanoarchitectures exhibit exceptional electrocatalytic methanol oxidation properties in terms of a large electrochemically active surface area of 126.2 m~2 g_(Rh)~(-1),a high mass activity of 1056.9 mA mg_(Rh)-~1,and a long service life,which significantly outperform those of conventional particle-shaped Rh catalysts supported by carbon black,carbon nanotubes,reduced graphene oxide,and MXene matrixes as well as the commercial Pt nanoparticle/carbon black and Pd nanoparticle/carbon black catalysts with the same noble metal loading amount.Density functional theory calculations further demonstrate that the direct electronic interaction at the well-contacted 2D/2D heterointerfaces effectively enhances the adsorption energy of Rh nanosheets and induces a left shift of the d-band center,thereby making the Rh NS/MXene configuration suffer less from CO poisoning.This work highlights the importance of rational heterointerface design in the construction of advanced noble metal/MXene electrocatalysts,which may provide new avenues for developing the next-generation DMFC devices.展开更多
基金funded by an Australian Research Council LIEF grant(LE120100026)supported by the National Natural Science Foundation of China(U19A2017)
文摘Oxygen reduction reaction(ORR)catalysts play a critical role in energy storage and conversion devices and have been attracted enormous interests,and however,it remains challenging to develop highly active cheap catalysts in a simple and green route.Inspired by the heme-copper oxidases(HOCs),in which the ORR active center is originated from the incorporation of Fe-N_(4)with copper atom,we here developed a fine manganese oxide nanosheets(MnO_(x)NSs)integrated with iron phthalocyanine(FePc)anchored on highly conductive graphene(MnO_(x)/FePc-G)through a green route only involve ethanol as the reagent.The bio-inspired catalyst MnO_(x)/Fe Pc-G demonstrated high ORR activity with a half-wave potential(E_(1/2))of 0.887 V,about 57 mV more positive than that of Pt/C.And the current density(j)at 0.9 V is about 1.9 m A cm^(-2),which is three times of Pt/C and FePc-G.More importantly,the bio-inspired systems show superior stability in comparison to commercial Pt/C,showing a potential of 0.863 V to deliver a j of 3 mA cm^(-2)after 18000 s polarization,about 80 mV higher than that of 0.783 V for Pt/C.The high activity is contributed by the integration of the Fe Pc and MnO_(x)NSs that plays the role to assist the cleavage of the O_(2)bond.Our approach provides a new evidence to develop highly efficient ORR catalysts through imitate the naturally involved systems through a simple route.
基金supported by the National Natural Science Foundation of China(11872171 and 22209037)the Project on Excellent Post-graduate Dissertation of Hohai University。
文摘Although metallic rhodium(Rh)is regarded as a promising platinum-alternative anode catalyst of direct methanol fuel cell(DMFC),the conventional"particle-to-face"contact model between Rh and matrix largely limits the overall electrocatalytic performance due to their insufficient cooperative effects.Herein,we report a controllable and robust heterointerface engineering strategy for the bottom-up fabrication of rhombic Rh nanosheets in situ confined on Ti_3C_(2)T_x MXene nanolamellas(Rh NS/MXene)via a convenient stereoassembly process.This unique design concept gives the resulting 2D/2D Rh NS/MXene heterostructure intriguing textural features,including large accessible surface areas,strong"face-toface"interfacial interactions,homogeneous Rh nanosheet distribution,ameliorative electronic structure,and high electronic conductivity.As a consequence,the as-prepared Rh NS/MXene nanoarchitectures exhibit exceptional electrocatalytic methanol oxidation properties in terms of a large electrochemically active surface area of 126.2 m~2 g_(Rh)~(-1),a high mass activity of 1056.9 mA mg_(Rh)-~1,and a long service life,which significantly outperform those of conventional particle-shaped Rh catalysts supported by carbon black,carbon nanotubes,reduced graphene oxide,and MXene matrixes as well as the commercial Pt nanoparticle/carbon black and Pd nanoparticle/carbon black catalysts with the same noble metal loading amount.Density functional theory calculations further demonstrate that the direct electronic interaction at the well-contacted 2D/2D heterointerfaces effectively enhances the adsorption energy of Rh nanosheets and induces a left shift of the d-band center,thereby making the Rh NS/MXene configuration suffer less from CO poisoning.This work highlights the importance of rational heterointerface design in the construction of advanced noble metal/MXene electrocatalysts,which may provide new avenues for developing the next-generation DMFC devices.