The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O...The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O and CO2 was the competitive reaction for the surface oxygen species, CH4 was produced via the hydrogenation of carbon species step by step, and C2 products were formed by the polymerization of surface-active carbon species (-CH2-). Hydrogen assisted the dissociation of CO. The hydrogenation of surface carbon species was the rate-limiting step in the hydrogenation of CO over CeO2-Co/SiO2 catalyst. The investigation of total pressure, gas hourly space velocity (GHSV), and product distribution using nitrogen-rich synthesis gas as feedstock over a laboratory scale fixed-bed reactor indicated that total pressure and GHSV had a significant effect on the catalytic performance of CeO2-Co/SiO2 catalyst. The removal of heat and control of the reaction temperature were extremely critical steps, which required lower GHSV and appropriate CO conversion to avoid the deactivation of the catalyst. The feedstock of nitrogen-rich synthesis gas was favorable to increase the conversion of CO, but there was a shift of product distribution toward the light hydrocarbon. The nitrogen-rich synthesis gas was feasible for F-T synthesis for the utilization of remote natural gas.展开更多
XRD, Raman, TEM, and N2-adsorption were utilized to characterize CeO2/SiO2 prepared by coprecipi-tation and surfactant-assisted method. The results show that nanocrystalline CeO2 can be uniformly supported on the surf...XRD, Raman, TEM, and N2-adsorption were utilized to characterize CeO2/SiO2 prepared by coprecipi-tation and surfactant-assisted method. The results show that nanocrystalline CeO2 can be uniformly supported on the surface of SiO2 particles, when the molar ratio of Si4+/(Ce3++Si4+) is less than 35% in coprecipitation samples. At higher Si content, the surface of SiO2 can not be fully covered by CeO2. With surfactant (CTAB) added, the u-iformly supported structure can even exist when the molar ratio of Si4+/(Ce3++Si4+) is as high as 53%. It is because Ce and Si complexes can be well dispersed in precursor solution in present of CTAB. However, the uniformly supported structure can not be synthesised through surfactant-assisted approch for its hydrothermal threatment, which can easily lead to separate aggregation of nanocrystalline CeO2 and SiO2 particles.展开更多
The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with eth...The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.展开更多
This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature....This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.展开更多
Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silic...Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silica was studied. The Cu-Ag/SiO2 catalyst supported on silica sol was prepared by homogeneous deposition-precipitation of the mixture of aqueous euprammonia complex and silica sol. The proper active temperature of Cu-Ag/SiO2 catalyst for hydrogenation of DMO was 523-623 K. The most preferable reaction conditions for methyl glycolate (MG) were optimized: temperature at 468-478 K, 40-60 mesh catalyst diameter, H2/DMO ratio 40, and 1.0 h^-1 of LHSV.展开更多
基金the National Key Project for Basic Research of China(973 Project)(No.2005CB221402)the China National Petroleum Corporation.
文摘The surface species of CO hydrogenation on CeO2-Co/SiO2 catalyst were investigated using the techniques of temperature programmed reaction and transient response method. The results indicated that the formation of H2O and CO2 was the competitive reaction for the surface oxygen species, CH4 was produced via the hydrogenation of carbon species step by step, and C2 products were formed by the polymerization of surface-active carbon species (-CH2-). Hydrogen assisted the dissociation of CO. The hydrogenation of surface carbon species was the rate-limiting step in the hydrogenation of CO over CeO2-Co/SiO2 catalyst. The investigation of total pressure, gas hourly space velocity (GHSV), and product distribution using nitrogen-rich synthesis gas as feedstock over a laboratory scale fixed-bed reactor indicated that total pressure and GHSV had a significant effect on the catalytic performance of CeO2-Co/SiO2 catalyst. The removal of heat and control of the reaction temperature were extremely critical steps, which required lower GHSV and appropriate CO conversion to avoid the deactivation of the catalyst. The feedstock of nitrogen-rich synthesis gas was favorable to increase the conversion of CO, but there was a shift of product distribution toward the light hydrocarbon. The nitrogen-rich synthesis gas was feasible for F-T synthesis for the utilization of remote natural gas.
文摘XRD, Raman, TEM, and N2-adsorption were utilized to characterize CeO2/SiO2 prepared by coprecipi-tation and surfactant-assisted method. The results show that nanocrystalline CeO2 can be uniformly supported on the surface of SiO2 particles, when the molar ratio of Si4+/(Ce3++Si4+) is less than 35% in coprecipitation samples. At higher Si content, the surface of SiO2 can not be fully covered by CeO2. With surfactant (CTAB) added, the u-iformly supported structure can even exist when the molar ratio of Si4+/(Ce3++Si4+) is as high as 53%. It is because Ce and Si complexes can be well dispersed in precursor solution in present of CTAB. However, the uniformly supported structure can not be synthesised through surfactant-assisted approch for its hydrothermal threatment, which can easily lead to separate aggregation of nanocrystalline CeO2 and SiO2 particles.
基金the financial support from China Postdoctoral Science Foundation (2014M560224)
文摘The effects of ethanol vapor pretreatment on the performance of CrOx/SiO2 catalysts during the dehydrogenation of propane to propylene were studied with and without the presence of CO2.The catalyst pretreated with ethanol vapor exhibited better catalytic activity than the pristine CrOx/SiO2,generating 41.4% propane conversion and 84.8% propylene selectivity.The various catalyst samples prepared were characterized by X-ray diffraction,transmission electron microscopy,temperature-programmed reduction,X-ray photoelectron spectroscopy and reflectance UV-Vis spectroscopy.The data show that coordinative Cr^3+ species represent the active sites during the dehydrogenation of propane and that these species serve as precursors for the generation of Cr^3+.Cr^3+ is reduced during the reaction,leading to a decrease in catalytic activity.Following ethanol vapor pretreatment,the reduced CrOx in the catalyst is readily re-oxidized to Cr^6+ by CO2.The pretreated catalyst thus exhibits high activity during the propane dehydrogenation reaction by maintaining the active Cr^3+ states.
基金supported by the National Natural Science Foundation of China (No. 21507130)the Open Project Program of Beijing National Laboratory for Molecular Sciences (No. 20140142)+3 种基金the Open Project Program of Chongqing Key Laboratory of Environmental Materials and Remediation Technology from Chongqing University of Arts and Sciences (No. CEK1405)the Open Project Program of Jiangsu Key Laboratory of Vehicle Emissions Control (No. OVEC001)the Open Project Program of Chongqing Key Laboratory of Catalysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)the Chongqing Science & Technology Commission (Nos. cstc2016jcyj A0070, cstc2014pt-gc20002, cstckjcxljrc13)~~
文摘This work examines the influence of preparation methods on the physicochemical properties and catalytic performance of MnOx‐CeO2 catalysts for selective catalytic reduction of NO by NH3 (NH3‐SCR) at low temperature. Five different methods, namely, mechanical mixing, impregnation,hydrothermal treatment, co‐precipitation, and a sol‐gel technique, were used to synthesizeMnOx‐CeO2 catalysts. The catalysts were characterized in detail, and an NH3‐SCR model reaction waschosen to evaluate the catalytic performance. The results showed that the preparation methodsaffected the catalytic performance in the order: hydrothermal treatment > sol‐gel > co‐precipitation> impregnation > mechanical mixing. This order correlated with the surface Ce3+ and Mn4+ content,oxygen vacancies and surface adsorbed oxygen species concentration, and the amount of acidic sitesand acidic strength. This trend is related to redox interactions between MnOx and CeO2. The catalystformed by a hydrothermal treatment exhibited excellent physicochemical properties, optimal catalyticperformance, and good H2O resistance in NH3‐SCR reaction. This was attributed to incorporationof Mnn+ into the CeO2 lattice to form a uniform ceria‐based solid solution (containing Mn‐O‐Cestructures). Strengthening of the electronic interactions between MnOx and CeO2, driven by thehigh‐temperature and high‐pressure conditions during the hydrothermal treatment also improved the catalyst characteristics. Thus, the hydrothermal treatment method is an efficient and environment‐friendly route to synthesizing low‐temperature denitrification (deNOx) catalysts.
文摘Methyl glycolate is a good solvent and can be used as feedstock for the synthesis of some important organic chemicals. Catalytic hydrogenation of dimethyl oxalate (DMO) over copper-silver catalyst supported on silica was studied. The Cu-Ag/SiO2 catalyst supported on silica sol was prepared by homogeneous deposition-precipitation of the mixture of aqueous euprammonia complex and silica sol. The proper active temperature of Cu-Ag/SiO2 catalyst for hydrogenation of DMO was 523-623 K. The most preferable reaction conditions for methyl glycolate (MG) were optimized: temperature at 468-478 K, 40-60 mesh catalyst diameter, H2/DMO ratio 40, and 1.0 h^-1 of LHSV.